scholarly journals Fe-MOFs prepared with the DBD plasma method for efficient Fenton catalysis

RSC Advances ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 6379-6386 ◽  
Author(s):  
Xumei Tao ◽  
Chao Sun ◽  
Liang Huang ◽  
Yuanyuan Han ◽  
Dongyan Xu

Fe-MOFs were successfully synthesized with the dielectric barrier discharge (DBD) plasma method, and applied for degradation of methyl orange by the Fenton process.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 961 ◽  
Author(s):  
Zhiyuan Fan ◽  
Lanbo Di ◽  
Xiuling Zhang ◽  
Hongyang Wang

Cotton-fabric-supported silver nanoparticles (Ag NPs) have aroused great attention due to their remarkable physical and chemical properties and excellent broad-spectrum antibacterial performance.In this work, a surface dielectric barrier discharge (DBD) plasma method is developed and employed to prepare cotton fabric supported Ag NPs (Ag/cotton) for the first time. UV-Vis and X-ray photoelectron spectroscopy (XPS) results confirm the formation of Ag NPs. TEM images show that the size of Ag NPs is in the range 4.8–5.3 nm. Heat-sensitive cotton fabrics are not destroyed by surface DBD plasma according to FTIR and XRDresults. Wash fastness of the Ag/cotton samples is investigated using ultrasonic treatment for 30 min and it is shown that the Ag NPs possess good adhesion to the cotton fabric according to UV-Vis spectra. Antibacterial activity of the Ag/cotton samples shows that obvious bacteriostasis loops are observed around the samples with the appearance of both Gram-negative bacterium Escherichia coli (E. coli) and Gram-positive bacterium Bacillus subtilis (B. subtilis). The average diameter of the bacteriostasis loops against both E. coli and B. subtilis becomes larger with an increasing silver loading amount.This work provides a universal, fast, simple, and environmentally-friendly cold plasma method for synthesizing Ag NPs on heat-sensitive materials at atmospheric pressure.


RSC Advances ◽  
2020 ◽  
Vol 10 (60) ◽  
pp. 36363-36370
Author(s):  
Xumei Tao ◽  
Xinjie Yuan ◽  
Liang Huang ◽  
Shuyong Shang ◽  
Dongyan Xu

Fe-based metal organic frameworks (Fe-MOFs) were successfully synthesized with the dielectric barrier discharge (DBD) plasma method and FeSO4·7H2O as the Fe precursor.


Author(s):  
Baowei Wang ◽  
Meng Xu ◽  
Chunmei Chi ◽  
Chao Wang ◽  
Dajun Meng

AbstractThe dielectric barrier discharge (DBD) technique based cylindrical water falling film reactor was used for degrading an azo dye methyl orange (MO). The primary conditions affecting the degradation of methyl orange were systematically investigated. After 30 min plasma treatment, the degradation rate of MO was as high as 93.7% with gas velocity of 300 mL/min and the input energy of 72.5W. The influences of initial pH and conductivity of MO solution were also explored. The results indicated that the optimum pH value was 3.02 and 99.1% removal of MO was achieved within 30 min. Three catalytic systems DBD/Fe


Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Yingying Li ◽  
Rida Atif ◽  
Ketao Chen ◽  
Jiushan Cheng ◽  
Qiang Chen ◽  
...  

Dielectric barrier discharge (DBD) plasma has been found to uniquely polymerize ribose that is not usually subject to polymerization since molecules that tend to polymerize almost always possess at least a π-bond. The polymer was analyzed via nuclear magnetic resonance (NMR) spectra, matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectroscopy and Fourier-Transform inferred spectroscopy (FTIR), and it was found that dehydration occurs during polymerization.


Author(s):  
Yi Chen ◽  
Li Fei ◽  
Liming He ◽  
Lei Zhang ◽  
Chunchang Zhu ◽  
...  

A test platform was developed to investigate the performance of aero-engine combustor by the dielectric barrier discharge (DBD) plasma assisted combustion (PAC) in the simulated maximum condition. Conventional combustion experiments and plasma-assisted combustion conditions were conducted to study the effect of PAC on the performances including average outlet temperature, combustion efficiency and pattern factor under four different excessive air coefficients five different voltages. The comparative experiment shows that the combustion efficiency is improved after PAC compared with the normal conditions, the combustion efficiency of PAC increases 2.31% in the fuel-rich condition when Up-p is 40 kV. The uniformity of the outlet temperature field is also improved after PAC, the decrease of the pattern factor is more than 5% in the fuel-rich condition. These results offer certain reference value for the future application of PAC in aero-engine combustor and improving its performance.


2019 ◽  
Vol 36 (2) ◽  
pp. 157-173
Author(s):  
David E. Ashpis ◽  
Douglas R. Thurman

Abstract We address requirements for laboratory testing of AC Dielectric Barrier Discharge (AC-DBD) plasma actuators for active flow control in aviation gas turbine engines. The actuator performance depends on the gas discharge properties, which, in turn, depend on the pressure and temperature. It is technically challenging to simultaneously set test-chamber pressure and temperature to the flight conditions. We propose that the AC-DBD actuator performance depends mainly on the gas density, when considering ambient conditions effects. This enables greatly simplified testing at room temperature with only chamber pressure needing to be set to match the density at flight conditions. For turbine engines, we first constructed generic models of four engine thrust-classes; 300-, 150-, 50-passenger, and military fighter, and then calculated the densities along the engine at sea-level takeoff and altitude cruise conditions. The range of chamber pressures that covers all potential applications was found to be from 3 to 1256 kPa (0.03 to 12.4 atm), depending on engine-class, flight altitude, and actuator placement in the engine. The engine models are non-proprietary and can be used as reference data for evaluation requirements of other actuator types and for other purposes. We also provided examples for air vehicles applications up to 19,812 m (65,000 ft).


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
F. F. Rodrigues ◽  
J. C. Pascoa ◽  
M. Trancossi

Dielectric barrier discharge (DBD) plasma actuators have several applications within the field of active flow control. Separation control, wake control, aircraft noise reduction, modification of velocity fluctuations, or boundary layer control are just some examples of their applications. They present several attractive features such as their simple construction, very low mass, fast response, low power consumption, and robustness. Besides their aerodynamic applications, these devices have also possible applications within the field of heat transfer, for example film cooling applications or ice formation prevention. However, due to the extremely high electric fields in the plasma region and consequent impossibility of applying classic intrusive techniques, there is a relative lack of information about DBDs thermal characteristics. In an attempt to overcome this scenario, this work describes the thermal behavior of DBD plasma actuators under different flow conditions. Infra-red thermography measurements were performed in order to obtain the temperature distribution of the dielectric layer and also of the exposed electrode. During this work, we analyzed DBD plasma actuators with different dielectric thicknesses and also with different dielectric materials, whose thermal behavior is reported for the first time. The results allowed to conclude that the temperature distribution is not influenced by the dielectric thickness, but it changes when the actuator operates under an external flow. We also verified that, although in quiescent conditions the exposed electrode temperature is higher than the plasma region temperature, the main heat energy dissipation occurs in the dielectric, more specifically in the plasma formation region.


Sign in / Sign up

Export Citation Format

Share Document