Size-dependence of the flow threshold in dense granular materials

Soft Matter ◽  
2018 ◽  
Vol 14 (25) ◽  
pp. 5294-5305 ◽  
Author(s):  
Daren Liu ◽  
David L. Henann

A size-dependent flow threshold is measured in discrete-element method simulations of dense granular flow across several different flow configurations and may be quantitatively captured using a nonlocal continuum model for dense granular flow.

Author(s):  
A. S. Sharipov ◽  
◽  
B. I. Loukhovitski ◽  

The size-dependence of different physical properties of atomic clusters (by the example of binding energy, collision diameter, and static isotropic polarizability) is discussed.


Author(s):  
Alessandro Tasora ◽  
Mihai Anitescu

Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.


2000 ◽  
Author(s):  
Mehrdad Massoudi ◽  
Tran X. Phuoc

Abstract In this paper we study the flow of granular materials between two horisontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (1990), where the material parameters are derived using the kinetic theory model proposed by Boyle and Massoudi (1990). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.


2021 ◽  
Author(s):  
Chuchu Chen ◽  
Xiaoxiang Wang ◽  
Kurt Binder ◽  
Mohammad Mehdi Ghahremanpour ◽  
David van der Spoel ◽  
...  

Abstract. Size-dependent solubility is prevalent in atmospheric nanoparticles, but a molecular level understanding is still insufficient, especially for organic compounds. Here, we performed molecular dynamics simulations to investigate the size dependence of succinic acid solvation on the scale of ~1–4 nm with the potential of mean forces method. Our analyses reveal that the surface preference of succinic acid is stronger for a droplet than the slab of the same size, and the surface propensity is enhanced due to the curvature effect as the droplet becomes smaller. Energetic analyses show that such surface preference is primarily an enthalpic effect in both systems, while the entropic effect further enhances the surface propensity in droplets. On the other hand, with decreasing droplet size, the solubility of succinic acid in the internal bulk volume may decrease, imposing an opposite effect on the size dependence of solubility as compared with the enhanced surface propensity. Meanwhile, structural analyses, however, show that the surface to internal bulk volume ratio increases drastically, especially when considering the surface in respect to succinic acid, e.g., for droplet with radius of 1 nm, the internal bulk volume would be already close to zero for the succinic acid molecule.


Sign in / Sign up

Export Citation Format

Share Document