A Convex Complementarity Approach for Simulating Large Granular Flows

Author(s):  
Alessandro Tasora ◽  
Mihai Anitescu

Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.

Landslides ◽  
2021 ◽  
Author(s):  
B. Cagnoli

AbstractGranular flows of angular rock fragments such as rock avalanches and dense pyroclastic flows are simulated numerically by means of the discrete element method. Since large-scale flows generate stresses that are larger than those generated by small-scale flows, the purpose of these simulations is to understand the effect that the stress level has on flow mobility. The results show that granular flows that slide en mass have a flow mobility that is not influenced by the stress level. On the contrary, the stress level governs flow mobility when granular flow dynamics is affected by clast agitation and collisions. This second case occurs on a relatively rougher subsurface where an increase of the stress level causes an increase of flow mobility. The results show also that as the stress level increases, the effect that an increase of flow volume has on flow mobility switches sign from causing a decrease of mobility at low stress level to causing an increase of mobility at high stress level. This latter volume effect corresponds to the famous Heim’s mobility increase with the increase of the volume of large rock avalanches detected so far only in the field and for this reason considered inexplicable without resorting to extraordinary mechanisms. Granular flow dynamics is described in terms of dimensionless scaling parameters in three different granular flow regimes. This paper illustrates for each regime the functional relationship of flow mobility with stress level, flow volume, grain size, channel width, and basal friction.


Author(s):  
Martin C. Marinack ◽  
Patrick S. M. Dougherty ◽  
C. Fred Higgs

Understanding granular flows has always been important for predicting natural phenomena such as rockslides and soil erosion, as well as industrial processes such as coal-based fossil fuel systems and solids processing. As such, it becomes important to understand granular flows from both a classical granular flow and tribological perspective. Inherently important in the study of granular flows is the study of the individual particle level interactions, which define the global behavior of the flow. The current work examines both the coefficient of restitution (COR) and coefficient of friction (COF) for various material combinations. COR and tribological experiments are performed on various sphere and plate (disk) materials, such as low carbon steel, tungsten carbide (WC), and NITINOL 60.


2012 ◽  
Vol 220 ◽  
pp. 7-14 ◽  
Author(s):  
V. Vidyapati ◽  
M. Kheiripour Langroudi ◽  
J. Sun ◽  
S. Sundaresan ◽  
G.I. Tardos ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 716
Author(s):  
Johann Landauer ◽  
Petra Foerst

Triboelectric separation is a promising technology to separate fine powders. To enable triboelectric separation for its application in industry, the impact of the process and product parameters must be examined. In this study, with regards to different wall materials in the charging step (PTFE, POM, PE, PVC, and PMMA), the influence of the powder composition of a binary starch-protein mixture with a protein content of 15 wt.%, 30 wt.% and 45 wt.% was studied. By increasing the protein content in the feed, the separation selectivity increased. No dependency of the empirical triboelectric series was determined for all powder compositions. The variation in the protein content of the initial powder and turbulent flow profiles results in a variation in the contact number of particles calculated. An increase in the contact number of particles leads to an increase in the protein content separated on the cathode, whereas the protein content on the anode is only slightly affected. These findings underpin the assumption that particle-particle interaction plays a decisive role in triboelectric charging of fine powders.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


Author(s):  
Arman Pazouki ◽  
Dan Negrut

The current work promotes the implementation of the Smoothed Particle Hydrodynamics (SPH) method for the Fluid-Solid Interaction (FSI) problems on three levels: 1- an algorithm is described to simulate FSI problems, 2- a parallel GPU implementation is described to efficiently alleviate the performance problem of the SPH method, and 3- validations against other numerical methods and experimental results are presented to demonstrate the accuracy of SPH and SPH-based FSI simulations. While the numerical solution of the fluid dynamics is performed via SPH method, the general Newton-Euler equations of motion are solved for the time evolution of the rigid bodies. Moreover, the frictional contacts in the solid phase are resolved by the Discrete Element Method (DEM), which draws on a viscoelastic model for the mutual interactions. SPH is a Lagrangian method and allows an efficient and straightforward coupling of the fluid and solid phases, where any interface, including boundaries, can be decomposed by SPH particles. Therefore, with a single SPH algorithm, fluid flow and interfacial interactions, namely force and motion, are considered. Furthermore, without any extra effort, the contact resolution of rigid bodies with complex geometries benefits from the spherical decomposition of solid surfaces. Although SPH provides 2nd order accuracy in the discretization of mass and momentum equations, the pressure field may still exhibit large oscillations. One of the most straightforward and computationally inexpensive solutions to this problem is the density re-initialization technique. Additionally, to prevent particle interpenetration and improve the incompressibility of the flow field, the XSPH correction is adopted herein. Despite being relatively straightforward to implement for the analysis of both internal and free surface flows, a naïve SPH simulation does not exhibit the efficiency required for the 3D simulation of real-life fluid flow problems. To address this issue, the software implementation of the proposed framework relies on parallel implementation of the spatial subdivision method on the Graphics Processing Unit (GPU), which allows for an efficient 3D simulation of the fluid flow. Similarly, the time evolution and contact resolution of rigid bodies are implemented using independent GPU-based kernels, which results in an embarrassingly parallel algorithm. Three problems are considered in the current work to show the accuracy of SPH and FSI algorithms. In the first problem, the simulation of the transient Poiseuille flow exhibits an exact match with the analytical solution in series form. The lateral migration of the neutrally buoyant circular cylinder, referred to as tubular pinch effect, is successfully captured in the second problem. In the third problem, the migration of spherical particles in pipe flow was simulated. Two tests were performed to demonstrate whether the Magnus effect or the curvature of the velocity profile cause the particle migration. At the end, the original experiment of the Segre and Silberberg (Segre and Silberberg, Nature 189 (1961) 209–210), which is composed of 3D fluid flow and several rigid particles, is simulated.


Sign in / Sign up

Export Citation Format

Share Document