Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis

The Analyst ◽  
2019 ◽  
Vol 144 (9) ◽  
pp. 2994-3004 ◽  
Author(s):  
Hongxiao Sun ◽  
Min Hong ◽  
Qiangqiang Yang ◽  
Chuan Li ◽  
Guangzhi Zhang ◽  
...  

A locked nucleic acid-functionalized gold nanoparticle flare probe was designed to achieve in situ monitoring and regulating intracellular hTERT mRNA which also induced the apoptosis of cancer cells.

2001 ◽  
Vol 120 (5) ◽  
pp. A165-A165
Author(s):  
T SHIMADA ◽  
T KUNIYOSHI ◽  
K KOJIMA ◽  
Y MITOBE ◽  
T MITSUHASHI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A165
Author(s):  
Tadahito Shimada ◽  
Toru Kuniyoshi ◽  
Kazuo Kojima ◽  
Yasuo Mitobe ◽  
Takahiro Mitsuhashi ◽  
...  

2009 ◽  
Vol 15 (12) ◽  
pp. 4009-4016 ◽  
Author(s):  
Nobutake Yamamichi ◽  
Ryoichi Shimomura ◽  
Ken-ichi Inada ◽  
Kouhei Sakurai ◽  
Takeshi Haraguchi ◽  
...  

2006 ◽  
Vol 72 (8) ◽  
pp. 5311-5317 ◽  
Author(s):  
Kengo Kubota ◽  
Akiyoshi Ohashi ◽  
Hiroyuki Imachi ◽  
Hideki Harada

ABSTRACT Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.


2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


2010 ◽  
Vol 2 ◽  
pp. BIC.S3383 ◽  
Author(s):  
Radostina Cherneva ◽  
Ognian Georgiev ◽  
Ivanka Dimova ◽  
Blaga Rukova ◽  
Danail Petrov ◽  
...  

Objective The early detection of NSCLC is of importance because it provides chances for better outcomes. The aim of the study was to explore the clinical utility of EGFR and hTERT mRNA expression as markers for diagnosis of NSCLC. Methods EGFR and hTERT mRNA were quantified by quantative reverse transcription real time polymerase chain reaction in plasma of 45 non-small cell lung cancer (NSCLC) and 40 chronic obstructive pulmonary disease (COPD) patients, selected by certain spirometric characteristics that made them at high risk of developing lung cancer in future. Results The gene expression level of each gene was calculated and given as a relative quantity–-RQ. EGFR gene expression was found in all lung cancer patients. The mean level of expression was RQ = 29.39. hTERT mRNA could be detected in 88% of patients. The mean expression ratio in them was RQ = 17.31. Only 50% of the high risk patients turned to be positive for EGFR. The level of their expression was RQ = 2.09. The plasma levels of hTERT could be detected in 17 (42.5%) patients of the high risk COPD group. Their mean level of expression was RQ = 1.02. A statistically significant difference in EGFR and hTERT mRNA expression could be observed between the two groups of patients–-p = 0.0001. Conclusion EGFR and hTERT mRNA are potential markers for lung cancer diagnosis, whose clinical importance should be replicated in a larger cohort of patients.


2008 ◽  
Vol 25 (3) ◽  
pp. 283-287
Author(s):  
CHRISTINA PETTAN-BREWER ◽  
LI FU ◽  
SAMIR S. DEEB

Many attempts have been made over the years to distinguish human and primate L (long-wavelength sensitive) from M (middle-wavelength sensitive) cone photoreceptors using either immunohistochemistry or in situ hybridization. These attempts have been unsuccessful due to the very high degree of identity between the sequences of the L and M proteins and encoding mRNAs. The recent development of chemically modified oligonucleotide probes, referred to as locked nucleic acid (LNA) probes, has shown that they hybridize with much greater affinity and specificity to the target nucleic acid. This has greatly increased the potential for differentiating L from M cones by in situ hybridization. We have designed LNA oligonucleotide probes that are complementary to either the L or M coding sequences located in exon 5 of the Macaca nemestrina L and M pigment genes. We have shown that the LNA-M and LNA-L probes hybridize specifically to their respective target nucleic acid sequences in vitro. This result strongly suggests that these probes would be instrumental in rapidly distinguishing L from M cone in the entire retina, and in defining the cone mosaic during development and in adults.


Author(s):  
Julia Oyrer ◽  
Lauren E. Bleakley ◽  
Kay L. Richards ◽  
Snezana Maljevic ◽  
A. Marie Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document