Reaction parameter comparison and optimization of multiple displacement amplification

2020 ◽  
Vol 12 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Mengting Huang ◽  
Fang Yang ◽  
Jiye Fu ◽  
Pengfeng Xiao ◽  
Jing Tu ◽  
...  

After analysed MDA under different conditions, we found that different DNA denaturation methods before isothermal incubation can influence the amplification speed of MDA, and genome coverage uniformity was correlated with the amplification temperature.

2006 ◽  
Vol 72 (5) ◽  
pp. 3291-3301 ◽  
Author(s):  
Carl B. Abulencia ◽  
Denise L. Wyborski ◽  
Joseph A. Garcia ◽  
Mircea Podar ◽  
Wenqiong Chen ◽  
...  

ABSTRACT Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using φ29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and “clusters of orthologous groups” (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.


2009 ◽  
Vol 15 (11) ◽  
pp. 739-747 ◽  
Author(s):  
J. Ling ◽  
G. Zhuang ◽  
B. Tazon-Vega ◽  
C. Zhang ◽  
B. Cao ◽  
...  

Author(s):  
Tytus Bernas ◽  
Elikplimi K. Asem ◽  
J. Paul Robinson ◽  
Peter R. Cook ◽  
Jurek W. Dobrucki

2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.


2019 ◽  
Vol 150 (12) ◽  
pp. 124702 ◽  
Author(s):  
Helen Chadwick ◽  
Ana Gutiérrez-González ◽  
Rainer D. Beck ◽  
Geert-Jan Kroes

Author(s):  
Pooja P Humane ◽  
Vishwambhar S Patil ◽  
Amar B Patil

The flow of Casson–Williamson fluid on a stretching surface is considered for the study. The movement of fluid is examined under the effect of external magnetic field, thermal radiation and chemical consequences. The model is formed by considering all the physical aspects responsible for the physical mechanism. The formed mathematical model (partial differential equation) is numerically solved after transforming it into an ordinary one (ordinary differential equation) via similarity invariants. The physical mechanism for velocity, temperature, and concentration is examined through the associated parameters like radiation index, Williamson and Casson parameter, suction/injection parameter, porosity index, and chemical reaction parameter.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4617-4621
Author(s):  
Jing Tu ◽  
Yi Qiao ◽  
Yuhan Luo ◽  
Naiyun Long ◽  
Zuhong Lu

Monitoring multiple displacement amplification by fluorescence signals.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2235-2247
Author(s):  
Immanuel V Yap ◽  
David Schneider ◽  
Jon Kleinberg ◽  
David Matthews ◽  
Samuel Cartinhour ◽  
...  

AbstractFor many species, multiple maps are available, often constructed independently by different research groups using different sets of markers and different source material. Integration of these maps provides a higher density of markers and greater genome coverage than is possible using a single study. In this article, we describe a novel approach to comparing and integrating maps by using abstract graphs. A map is modeled as a directed graph in which nodes represent mapped markers and edges define the order of adjacent markers. Independently constructed graphs representing corresponding maps from different studies are merged on the basis of their common loci. Absence of a path between two nodes indicates that their order is undetermined. A cycle indicates inconsistency among the mapping studies with regard to the order of the loci involved. The integrated graph thus produced represents a complete picture of all of the mapping studies that comprise it, including all of the ambiguities and inconsistencies among them. The objective of this representation is to guide additional research aimed at interpreting these ambiguities and inconsistencies in locus order rather than presenting a “consensus order” that ignores these problems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


Author(s):  
Tomas R. Ines ◽  
Francisco J. Cisneros ◽  
Angel Goni ◽  
Juan Castellanos

Sign in / Sign up

Export Citation Format

Share Document