Melting of nucleobases. Getting the cutting edge of “Walden's Rule”

2019 ◽  
Vol 21 (24) ◽  
pp. 12787-12797 ◽  
Author(s):  
A. Abdelaziz ◽  
D. H. Zaitsau ◽  
N. V. Kuratieva ◽  
S. P. Verevkin ◽  
C. Schick

Surprisingly high melting temperatures of the five nucleobases have been measured using a specially developed fast scanning calorimetry method that prevents decomposition. Results are rationalized in terms of an “ideal associated solution”.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2021 ◽  
Author(s):  
Xiaoshi Zhang ◽  
Anne Gohn ◽  
Gamini Mendis ◽  
John F. Buzinkai ◽  
Steven J. Weigand ◽  
...  

1993 ◽  
Vol 296 (2) ◽  
pp. 489-496 ◽  
Author(s):  
A J Bailey ◽  
T J Sims ◽  
N C Avery ◽  
C A Miles

The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or ‘strength’) was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is taking place.


2014 ◽  
Vol 30 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Linfang Li ◽  
Bingge Zhao ◽  
Bin Yang ◽  
Quanliang Zhang ◽  
Qijie Zhai ◽  
...  

Abstract


2005 ◽  
Vol 896 ◽  
Author(s):  
Mikhaylo A Trunov ◽  
Swati Umbrakar ◽  
Mirko Schoenitz ◽  
Joseph T Mang ◽  
Edward L Dreizin

AbstractRecently, nanometer-sized aluminum powders became available commercially and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nano-sized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nano-sized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small angle x-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 °C in argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic step-wise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.


2021 ◽  
Vol 316 ◽  
pp. 533-537
Author(s):  
Pavel L. Reznik ◽  
Boris V. Ovsyannikov

The article presents the results of an investigation of microstructural features and mechanical characteristics of Al-5.0Cu-0.5Mg alloy containing up to 0.4 wt. % Ag and up to 0.1 wt. % Ce. The experiment was conducted using optical microscopy, Scanning Electron Microscopy as well as an electron probe micro-analyzer and Differential Scanning Calorimetry. Samples in cast condition and after heat treatment were examined. The melting temperatures of non-equilibrium eutectics (non-equilibrium solidus), equilibrium solidus and liquidus were determined. The optimal temperature of the homogenizing heat treatment was determined, which was 500°C. Using this heat treatment mode resulted in the elimination of dendritic segregation and complete dissolution of silver in aluminum. Injection of cerium into the Al-Cu-Mg-Ag system during crystallization of the melt is accompanied by the formation of a coarse four-component phase, which has the morphology of polyhedrons, is on the grain boundaries. The estimation of the relation between microstructure characteristics and mechanical properties of the alloy has been made.


Sign in / Sign up

Export Citation Format

Share Document