Gas sensing properties of buckled bismuthene predicted by first-principles calculations

2019 ◽  
Vol 21 (21) ◽  
pp. 11455-11463 ◽  
Author(s):  
Wenfeng Pan ◽  
Ning Qi ◽  
Bin Zhao ◽  
Sheng Chang ◽  
Shizhuo Ye ◽  
...  

An investigation of the transport and optical properties of buckled bismuthene with different adsorbed gas molecules.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Yong ◽  
Jianqi Zhang ◽  
Xiangchao Ma ◽  
Weiming He

Developing efficient N2 and O2 gas sensors is of great importance to our daily life and industrial technology. In this work, first-principles calculations are performed to study the N2 and O2 gas-sensing properties of pure and defected PtSe2. It is found that both N2 and O2 adsorb weakly on pure PtSe2, and adsorption of the molecules induces negligible changes in the electrical and optical properties. Whereas the Pt@Se anti-site defect significantly improves the N2 adsorption capacity of PtSe2 and induces notable changes in the electrical property. Similar results are also observed for the Pt and Se vacancies and Pt@Se anti-site defects when examining O2 adsorption. In addition, notable changes in the optical absorption spectra of the PtSe2 with Pt@Se defect are induced upon N2 adsorption, which also occurs for PtSe2 with Pt and Se vacancies and Pt@Se anti-site defects upon O2 adsorption. These results demonstrate that PtSe2 with the corresponding defects can be both excellent electrical and optical sensors for detecting N2 and O2 gases. Our work offers a new avenue for preparing efficient gas sensors.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1059 ◽  
Author(s):  
Yanlin Zhang ◽  
Chaowei Jia ◽  
Qiuyue Wang ◽  
Quan Kong ◽  
Gang Chen ◽  
...  

Toluene is extensively used in many industrial products, which needs to be effectively detected by sensitive gas sensors even at low-ppm-level concentrations. Here, NiFe2O4 nano-octahedrons were calcinated from NiFe-bimetallic metal-organic framework (MOFs) octahedrons synthesized by a facile refluxing method. The co-existence of p-Phthalic acid (PTA) and 3,3-diaminobenzidine (DAB) promotes the formation of smooth NiFe-bimetallic MOFs octahedrons. After subsequent thermal treatment, a big weight loss (about 85%) transformed NiFe2O4 nanoparticles (30 nm) into NiFe2O4 porous nano-octahedrons with hollow interiors. The NiFe2O4 nano-octahedron based sensor exhibited excellent gas sensing properties for toluene with a nice stability, fast response, and recovery time (25 s/40 s to 100 ppm toluene), and a lower detection limitation (1 ppm) at 260 °C. The excellent toluene-sensing properties can not only be derived from the hollow interiors combined with porous nano-octahedrons to favor the diffusion of gas molecules, but also from the efficient catalytic activity of NiFe2O4 nanoparticles.


2009 ◽  
Vol 20 (18) ◽  
pp. 185504 ◽  
Author(s):  
Yong-Hui Zhang ◽  
Ya-Bin Chen ◽  
Kai-Ge Zhou ◽  
Cai-Hong Liu ◽  
Jing Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document