Absorption spectra of xanthines in aqueous solution: a computational study

2020 ◽  
Vol 22 (10) ◽  
pp. 5929-5941 ◽  
Author(s):  
Sara Gómez ◽  
Tommaso Giovannini ◽  
Chiara Cappelli

We present a detailed computational analysis of the UV/Vis spectra of caffeine, paraxanthine and theophylline in aqueous solution.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5853
Author(s):  
Sulejman Skoko ◽  
Matteo Ambrosetti ◽  
Tommaso Giovannini ◽  
Chiara Cappelli

We present a detailed computational study of the UV/Vis spectra of four relevant flavonoids in aqueous solution, namely luteolin, kaempferol, quercetin, and myricetin. The absorption spectra are simulated by exploiting a fully polarizable quantum mechanical (QM)/molecular mechanics (MM) model, based on the fluctuating charge (FQ) force field. Such a model is coupled with configurational sampling obtained by performing classical molecular dynamics (MD) simulations. The calculated QM/FQ spectra are compared with the experiments. We show that an accurate reproduction of the UV/Vis spectra of the selected flavonoids can be obtained by appropriately taking into account the role of configurational sampling, polarization, and hydrogen bonding interactions.


2016 ◽  
Vol 18 (40) ◽  
pp. 28175-28182 ◽  
Author(s):  
Sara Del Galdo ◽  
Andrea Amadei

In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes.


2005 ◽  
Vol 70 (11) ◽  
pp. 1769-1786 ◽  
Author(s):  
Luc A. Vannier ◽  
Chunxiang Yao ◽  
František Tureček

A computational study at correlated levels of theory is reported to address the structures and energetics of transient radicals produced by hydrogen atom abstraction from C-1, C-2, C-3, C-4, C-5, O-1, O-3, and O-5 positions in 2-deoxyribofuranose in the gas phase and in aqueous solution. In general, the carbon-centered radicals are found to be thermodynamically and kinetically more stable than the oxygen-centered ones. The most stable gas-phase radical, 2-deoxyribofuranos-5-yl (5), is produced by H-atom abstraction from C-5 and stabilized by an intramolecular hydrogen bond between the O-5 hydroxy group and O-1. The order of radical stabilities is altered in aqueous solution due to different solvation free energies. These prefer conformers that lack intramolecular hydrogen bonds and expose O-H bonds to the solvent. Carbon-centered deoxyribose radicals can undergo competitive dissociations by loss of H atoms, OH radical, or by ring cleavages that all require threshold dissociation or transition state energies >100 kJ mol-1. This points to largely non-specific dissociations of 2-deoxyribose radicals when produced by exothermic hydrogen atom abstraction from the saccharide molecule. Oxygen-centered 2-deoxyribose radicals show only marginal thermodynamic and kinetic stability and are expected to readily fragment upon formation.


Author(s):  
Branislav Milovanović ◽  
Jurica Novak ◽  
Mihajlo Etinski ◽  
Wolfgang Domcke ◽  
Nadja Doslic

Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy...


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ömer Akbal ◽  
Hakan F. Öztop ◽  
Nidal H. Abu-Hamdeh

Purpose The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system was heated from the inner pipe, and temperature of the outer pipe was lower than that of inner pipe. Different geometrical ratio cases and two different temperature differences were tested for their effect on melting time. Design/methodology/approach A computational analysis through a pipe with corrugated pipe filled with PCM is analyzed. Finite volume method was applied with the SIMPLE algorithm method to solve the governing equations. Findings The results indicate that the geometrical parameters can be used to control the melting time inside the heat exchanger which, in turn, affect the energy efficiency. The fastest melting time is seen in Case 4 at the same temperature difference which is the major observation of the current work. Originality/value Originality of this work is to perform a three-dimensional analysis of melting of PCM in a corrugated pipe inserted pipe.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2007 ◽  
Vol 63 (8) ◽  
pp. 185-192
Author(s):  
Tamako Otsu ◽  
Mitsuhiko Hida

Sign in / Sign up

Export Citation Format

Share Document