Three-dimensional computational study in a corrugated pipe inserted system filled with phase change material

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ömer Akbal ◽  
Hakan F. Öztop ◽  
Nidal H. Abu-Hamdeh

Purpose The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system was heated from the inner pipe, and temperature of the outer pipe was lower than that of inner pipe. Different geometrical ratio cases and two different temperature differences were tested for their effect on melting time. Design/methodology/approach A computational analysis through a pipe with corrugated pipe filled with PCM is analyzed. Finite volume method was applied with the SIMPLE algorithm method to solve the governing equations. Findings The results indicate that the geometrical parameters can be used to control the melting time inside the heat exchanger which, in turn, affect the energy efficiency. The fastest melting time is seen in Case 4 at the same temperature difference which is the major observation of the current work. Originality/value Originality of this work is to perform a three-dimensional analysis of melting of PCM in a corrugated pipe inserted pipe.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Ömer Akbal ◽  
Hakan F. Öztop ◽  
Abdullah M. Abusorrah ◽  
Mohannad M. Bayoumi

Purpose The purpose of this paper is to solve the problem of a three-dimensional computational analysis for an elliptic-shaped cavity in a pipe under constant temperature. Design/methodology/approach The three-dimensional computational solution of governing equations was performed by using finite volume method with different temperature difference. Findings The parafin wax was chosen as a phase change material (PCM), and melting fraction, streamlines and isotherms are formed for different time step. It is found that position B give better results than that of position A, and temperature difference effects the duration of melting of PCM. Originality/value The three-dimensional analysis of melting in an ellipsoidal pipe with inner pipe with higher temperature is the main originality of this work.


2019 ◽  
Vol 29 (9) ◽  
pp. 2994-3011
Author(s):  
Amin Samimi Behbahan ◽  
Aminreza Noghrehabadi ◽  
C.P. Wong ◽  
Ioan Pop ◽  
Morteza Behbahani-Nejad

Purpose The purpose of this paper is to study thermal performance of metal foam/phase change materials composite under the influence of the enclosure aspect ratios (ratio of enclosure height: length). In this study, a compound metal foam/phase change material (PCM), which has been proved to be one of the most promising approaches for thermal conductivity promotion on PCMs, was used. Design/methodology/approach The PCM is considered initially at its melting temperature. The enclosure for all the cases has a constant volume with various aspect ratios. The left side of the enclosure is suddenly exposed to a thermal source having a constant heat flux, while the other three surfaces are kept thermally insulated. A two-dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was proposed. The coupling between velocity and pressure is solved using the SIMPLEC, and the Rhie and Chow interpolation is used to avoid the checker-board solutions for the pressure. Findings The effects of foam porosity and aspect ratio of the enclosure on the PCM’s melting time were investigated. The results indicated that enclosure aspect ratio plays a fundamental role in phase change of copper foam/PCM composites. For higher porosities, enclosures with bigger aspect ratios proved to led to optimal melting time. Besides, the best enclosure aspect ratio and foam porosity for a fixed-volume enclosure to have the shortest melting time are 2.1 and 91.66 per cent, respectively. However, for a specific amount of PCM inside a variable volume enclosure, the optimal melting time was for foam with ε = 95 per cent. The achieved results prove the great importance of selection of aspect ratio to benefit both conduction and convection heat transfer simultaneously. Originality/value The area of energy storage systems is original.


2019 ◽  
Vol 29 (11) ◽  
pp. 4377-4393 ◽  
Author(s):  
Sana Ben Salah ◽  
Mohamed Bechir Ben Hamida

Purpose The purpose of this paper is to optimize the configuration of a heat sink with phase change material for improving the cooling performance of light emitting diodes (LED). Design/methodology/approach A numerical three-dimensional time-dependent model is developed with COMSOL Multiphysics to simulate the phase change material melting process during both the charging and discharging period. Findings The model is validated with previously published works. It found a good agreement. The difference between filled cavities with phase change materials (PCM) and alternate cavities air-PCM is discussed. The last-mentioned showed a good ability for reducing the junction temperature during the melting time. Three cases of this configuration having the same total volume of PCM but a different number of cavities are compared. The case of ten fins with five PCM cavities is preferred because it permit a reduction of 21 per cent of the junction temperature with an enhancement ratio of 2:4. The performance of this case under different power input is verified. Originality/value The use of alternate air-PCM cavities of the heat sink. The use of PCM in LED to delay the peak temperature in the case of thermal shock (for example, damage of fan) An amount of energy is stored in the LED and it is evacuated to the ambient of the accommodation by the cycle of charging and discharging established (1,765 Joule stored and released each 13 min with 1 LED chip of 5 W).


Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1508
Author(s):  
Mohammad Ghalambaz ◽  
Mohammad Shahabadi ◽  
S. A. M Mehryan ◽  
Mikhail Sheremet ◽  
Obai Younis ◽  
...  

The melting flow and heat transfer of copper-oxide coconut oil in thermal energy storage filled with a nonlinear copper metal foam are addressed. The porosity of the copper foam changes linearly from bottom to top. The phase change material (PCM) is filled into the metal foam pores, which form a composite PCM. The natural convection effect is also taken into account. The effect of average porosity; porosity distribution; pore size density; the inclination angle of enclosure; and nanoparticles’ concentration on the isotherms, melting maps, and the melting rate are investigated. The results show that the average porosity is the most important parameter on the melting behavior. The variation in porosity from 0.825 to 0.9 changes the melting time by about 116%. The natural convection flows are weak in the metal foam, and hence, the impact of each of the other parameters on the melting time is insignificant (less than 5%).


Author(s):  
Jean Batina ◽  
Serge Blancher ◽  
Tarik Kouskou

Purpose – Mathematical and numerical models are developed to study the melting of a Phase Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant and uniform temperature or heat flux, assuming that the rest of the cavity is completely adiabatic. The paper used suitable numerical methods to follow the interface temporal evolution with a good accuracy. The purpose of this paper is to show how the evolution of the latent energy absorbed to melt the PCM depends on the temperature imposed on the lower wall of the cavity. Design/methodology/approach – The problem is written with non-homogeneous boundary conditions. Momentum and energy equations are numerically solved in space by a spectral collocation method especially oriented to this situation. A Crank-Nicolson scheme permits the resolution in time. Findings – The results clearly show the evolution of multicellular regime during the process of fusion and the kinetics of phase change depends on the boundary condition imposed on the bottom cell wall. Thus the charge and discharge processes in energy storage cells can be controlled by varying the temperature in the cell PCM. Substantial modifications of the thermal convective heat and mass transfer are highlighted during the transient regime. This model is particularly suitable to follow with a good accuracy the evolution of the solid/liquid interface in the process of storage/release energy. Research limitations/implications – The time-dependent physical properties that induce non-linear coupled unsteady terms in Navier-Stokes and energy equations are not taken into account in the present model. The present model is actually extended to these coupled situations. This problem requires smoother geometries. One can try to palliate this disadvantage by constructing smoother approximations of non-smooth geometries. The augmentation of polynomials developments orders increases strongly the computing time. When the external heat flux or temperature imposed at the PCM is much greater than the temperature of the PCM fusion, one must choose carefully some data to assume the algorithms convergence. Practical implications – Among the areas where this work can be used, are: buildings where the PCM are used in insulation and passive cooling; thermal energy storage, the PCM stores energy by changing phase, solid to liquid (fusion); cooling and transport of foodstuffs or pharmaceutical or medical sensitive products, the PCM is used in the food industry, pharmaceutical and medical, to minimize temperature variations of food, drug or sensitive materials; and the textile industry, PCM materials in the textile industry are used in microcapsules placed inside textile fibres. The PCM intervene to regulate heat transfer between the body and the outside. Originality/value – The paper's originality is reflected in the precision of its results, due to the use of a high-accuracy numerical approximation based on collocation spectral methods, and the choice of Chebyshev polynomials basis in both axial and radial directions.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4049-4059 ◽  
Author(s):  
Haythem Shili ◽  
Kamel Fahem ◽  
Souad Harmand ◽  
Jabrallah Ben

As part of the research in the field of thermal control of electronic components, a phase change material is confined in a liquid and is heated vertically on one side by a hot plate. The presence of the liquid around the phase change material prevents the formation of air bubbles produced in case of direct contact between the hotplate and the phase change material (extends the lifetime of the phase change material by reducing overheating zones). It improves heat transfer by increasing the thermal conductivity around the phase change material (raising the thermal exchange surface) and by accelerating the convective transfer. This work examines experimentally and numerically the effect of the water on the phase change material and on the heating plate. The water is used around the phase change material and a comparative study of the comportment of some important parameters like the melt front form, melting time, flow direction, temperature, and operating time is realized. It is found that the presences of the liquid around the phase change material seems to be more interesting for a thermal protection role than the standard case of the phase change material directly heated by the hotplate.


Author(s):  
Hamza Faraji ◽  
Mustapha Faraji ◽  
Mustapha El Alami

Abstract The present paper reports numerical results of the melting driven natural convection in an inclined rectangular enclosure filled with nano-enhanced phase change material (NePCM). The enclosure is heated from the bottom side by a flush-mounted heat source (microprocessor) that generates heat at a constant and uniform volumetric rate and mounted on a substrate (motherboard). All the walls are considered adiabatic. The purpose of the investigation is analyzing the effect of nanoparticles insertion by quantifying their contribution to the overall heat transfer. Combined effects of the PCM type, the inclination angle and the nanoparticles fraction on the structure of the fluid flow and heat transfer are investigated. A 2D mathematical model based on the conservation equations of mass, momentum, and energy was developed. The governing equations were integrated and discretized using the finite volume method. The SIMPLE algorithm was adopted for velocity–pressure coupling. The obtained results show that the nanoparticles insertion has an important quantitative effect on the overall heat transfer. The insertion of metallic nanoparticles with different concentrations affects the thermal behavior of the heat sink. They contribute to an efficient cooling of the heat source. The effect of nanoparticles insertion is also shown at the temperature distribution along the substrate.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 993 ◽  
Author(s):  
Wei Bai ◽  
Ping Yang ◽  
Shuai Wang ◽  
Jie Huang ◽  
Dingbo Chen ◽  
...  

Metalenses recently have attracted attention because of their more compact size in comparison with conventional lenses; they can also achieve better optical performance with higher resolution. Duplexer is an interesting function of a metalens that can distinguish different sources and divide them into two parts for specific purposes. In this article, we design tunable duplex metalenses with phase-change material Ge2Sb2Te5 for the first time. Two types of special unit cells are designed to modulate the incident lights, and four metalenses are designed based on the two types of unit cells. Specific phase profiles are calculated for different sections of metalens in which the corresponding unit cells are settled; accordingly, the metalenses can focus the incident lights at any positions according to our design. Moreover, the metalenses become selectable via tuning the state of phase-change material, which means that the output light field can be actively controlled. The proposal of our tunable duplex metalenses will offer new opportunities for active three-dimensional imaging or optical coding.


Sign in / Sign up

Export Citation Format

Share Document