Transition metal silicides: fundamentals, preparation and catalytic applications

2019 ◽  
Vol 9 (18) ◽  
pp. 4785-4820 ◽  
Author(s):  
Xiao Chen ◽  
Changhai Liang

Transition metal silicides as low-cost and earth-abundant inorganic materials are becoming indispensable constituents in catalytic systems for a variety of applications and exhibit excellent properties for sustainable industrial process.

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shikui Han ◽  
Kai Zhou ◽  
Yifu Yu ◽  
Chaoliang Tan ◽  
Junze Chen ◽  
...  

The layered transition metal dichalcogenides (TMDs) and transition metal phosphides are low-cost, earth-abundant, and robust electrocatalysts for hydrogen evolution reaction (HER). Integrating them into hybrid nanostructures is potentially promising to further boost the catalytic activity toward HER based on their synergistic effects. Herein, we report a general method for the synthesis of a series of MoSe2-based hybrid nanostructures, including MoSe2-Ni2P, MoSe2-Co2P, MoSe2-Ni, MoSe2-Co, and MoSe2-NiS, by postgrowth of Ni2P, Co2P, Ni, Co, and NiS nanostructures on the presynthesized MoSe2 nanosheet-assembled nanospheres, respectively, via a colloidal synthesis method. As a proof-of-concept application, the as-synthesized hybrid nanostructures are used as electrocatalysts for HER, exhibiting high activity and stability in acidic media. Among them, the MoSe2-Co2P composite shows the highest HER activity with an overpotential of 167 mV at 10 mA cm-2.


Polyhedron ◽  
2018 ◽  
Vol 154 ◽  
pp. 252-258
Author(s):  
Yasmeen Hameed ◽  
Sarah Ouanounou ◽  
Titel Jurca ◽  
Bulat Gabidullin ◽  
Ilia Korobkov ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Wenjun He ◽  
Jianing Cheng ◽  
Yaohui Gao ◽  
Caichi Liu ◽  
Jianling Zhao ◽  
...  

The development of earth-abundant transition metal sulfides electrocatalysts with excellent activity and stability toward alkaline hydrogen evolution reaction (HER) is critical but challenging. Iron-based sulfides are favored due to their...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jian Zhang ◽  
Jingjing Zhang ◽  
Feng He ◽  
Yijun Chen ◽  
Jiawei Zhu ◽  
...  

AbstractExploring low-cost and earth-abundant oxygen reduction reaction (ORR) electrocatalyst is essential for fuel cells and metal–air batteries. Among them, non-metal nanocarbon with multiple advantages of low cost, abundance, high conductivity, good durability, and competitive activity has attracted intense interest in recent years. The enhanced ORR activities of the nanocarbons are normally thought to originate from heteroatom (e.g., N, B, P, or S) doping or various induced defects. However, in practice, carbon-based materials usually contain both dopants and defects. In this regard, in terms of the co-engineering of heteroatom doping and defect inducing, we present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the ORR. The characteristics, ORR performance, and the related mechanism of these functionalized nanocarbons by heteroatom doping, defect inducing, and in particular their synergistic promotion effect are emphatically analyzed and discussed. Finally, the current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are proposed. This review will be beneficial for the rational design and manufacturing of highly efficient carbon-based materials for electrocatalysis.


Author(s):  
Xuanxuan Yang ◽  
Hong Yang ◽  
Tiantian Zhang ◽  
Yongbing Lou ◽  
Jinxi Chen

Rational modulation of low-cost and versatile Cd-based photocatalysts coupled with transition metal diselenides is favorable to reinforcing the performance of hydrogen evolution. Herein, the P-doped CdS nanorods (denoted as PCS)...


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 861 ◽  
Author(s):  
Ha-Eun Lee ◽  
Dopil Kim ◽  
Ahrom You ◽  
Myung Hwan Park ◽  
Min Kim ◽  
...  

α-Functionalization of carbonyl compounds in organic synthesis has traditionally been accomplished via classical enolate chemistry. As α-functionalized carbonyl moieties are ubiquitous in biologically and pharmaceutically valuable molecules, catalytic α-alkylations have been extensively studied, yielding a plethora of practical and efficient methodologies. Moreover, stereoselective carbon–carbon bond formation at the α-position of achiral carbonyl compounds has been achieved by using various transition metal–chiral ligand complexes. This review describes recent advances—in the last 20 years and especially focusing on the last 10 years—in transition metal-catalyzed α-alkylations of carbonyl compounds, such as aldehydes, ketones, imines, esters, and amides and in efficient carbon–carbon bond formations. Active catalytic species and ligand design are discussed, and mechanistic insights are presented. In addition, recently developed photo-redox catalytic systems for α-alkylations are described as a versatile synthetic tool for the synthesis of chiral carbonyl-bearing molecules.


2006 ◽  
Vol 418 (1-2) ◽  
pp. 21-26 ◽  
Author(s):  
Shengming Liu ◽  
Pavel Poplaukhin ◽  
Errun Ding ◽  
Christine E. Plecnik ◽  
Xuenian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document