Synthesis and characterization of novel 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin substituted metallo phthalocyanines and investigation of their photophysical and photochemical properties

2019 ◽  
Vol 48 (34) ◽  
pp. 13046-13056 ◽  
Author(s):  
Mücahit Özdemir ◽  
Begümhan Karapınar ◽  
Bahattin Yalçın ◽  
Ümit Salan ◽  
Mahmut Durmuş ◽  
...  

Coumarin functionalized metallo phthalocyanines shows increased singlet oxygen quantum yields when included lipophilic groups.

2019 ◽  
Vol 23 (11n12) ◽  
pp. 1542-1550
Author(s):  
Nagihan Kocaağa ◽  
Öznur Dülger Kutlu ◽  
Ali Erdoğmuş

In this study, the synthesis and characterization of mono-(phthalocyaninato) lutetium(III) (1-Cl and 1-F) [Lu[Formula: see text](AcO)(Pc)] (Pc [Formula: see text] phthalocyaninato, AcO [Formula: see text] acetate) and bis-(phthalocyaninato) lutetium(III) (2-Cl and 2-Br) [Lu[Formula: see text]Pc[Formula: see text]] bearing halogenated (F, Cl and Br) phenoxy–phenoxy groups are described and verified by IR, [Formula: see text]H-NMR, UV-vis and mass spectrometry. Photochemical and photophysical properties of 1-F, 1-Cl 2-Cl and 2-Br in DMSO are also presented. A comparison between photophysical and photochemical parameters of mono and bis derivatives showed that mono phthalocyanines are better photosensitizers than bis phthalocyanines. Photophysical and photochemical properties of phthalocyanines are very useful for photodynamic therapy applications. Singlet oxygen quantum yields [Formula: see text] give an indication of the potential of the complexes as photosensitizers in photodynamic therapy applications. The chloro, fluoro, bromo-phenoxy–phenoxy substituted mono-(phthalocyaninato) lutetium(III) complexes (1-Cl and 1-F) gave good singlet oxygen quantum yields (from 0.86 to 0.80) in DMSO. Thus, these complexes show potential as Type II photosensitizers for PDT of cancer.


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2083
Author(s):  
Tiago D. Martins ◽  
Eurico Lima ◽  
Renato E. Boto ◽  
Diana Ferreira ◽  
José R. Fernandes ◽  
...  

Photodynamic therapy is a medical modality developed for the treatment of several diseases of oncological and non-oncological etiology that requires the presence of a photosensitizer, light and molecular oxygen, which combined will trigger physicochemical reactions responsible for reactive oxygen species production. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties and the photobiological activity of several dicyanomethylene squaraine cyanine dyes. Thus, herein, the study of their aggregation character, photobleaching and singlet oxygen production ability, and the further application of the previously synthesized dyes in Caco-2 and HepG2 cancer cell lines, to evaluate their phototherapeutic effects, are described. Dicyanomethylene squaraine dyes exhibited moderate light-stability and, despite the low singlet oxygen quantum yields, were a core of dyes that exhibited relevant in vitro photodynamic activity, as there was an evident increase in the toxicity of some of the tested dyes exclusive to radiation treatments.


2012 ◽  
Vol 554-556 ◽  
pp. 811-815
Author(s):  
Min Chul Chung ◽  
Woong Kyu Jo ◽  
Seak Hwan Son ◽  
Chee Hun Kwak ◽  
Ji Hoon Lee ◽  
...  

The reaction of platinum(II) complexes of [Pt(bpy-R)Cl2] (R = H; 2,2’-bipyridine(bpy), R = 2(CH)3; 4,4’-dimethyl-2,2’-biypridine (DM-bpy), R = 4(CH3); 3,3’-5,5’-tertamethyl-2,2’-bipyridiyl (TM-bpy), (1-3) or [Pt(1,10-phen-R’)Cl2] (R’ = H; 1,10-phenanthroline(1,10-phen), R’= 4(CH3); 3,4,7,8-tetramethyl-1,10-phenanthroline(3,4,7,8-tetramethyl-1,10-phen) (4-5) with 1,4-bis(5'-2',2"-bipyridine)benzene(bpy-Ph-bpy) affords the following monomeric platinium(II) complexes: [Pt(bpy)(bpy-Ph-bpy)]2+(1), [Pt(DM-bpy)(bpy-Ph-bpy)](2), and [Pt(TM-bpy)(bpy-ph-bpy)]2+(3), [Pt(1,10-phenanthroline)(bpy-ph-bpy)]2+2+(4), [Pt(3,4,7,82+-tetramethyl-1,10-phen)(bpy-ph-bpy)]2+(5), respectively. These complexes were characterized by NMR, IR, UV/VIS and PL spectroscopy of the complexes were elucidated. The internal quantum yields of these platinum complexes are very high (0.13 ~ 0.99) and they emit light in the blue region (360 ~ 417 nm).


2015 ◽  
Vol 19 (09) ◽  
pp. 1046-1052 ◽  
Author(s):  
Ze-Bin Xu ◽  
Fa-Quan Yu ◽  
Fengshou Wu ◽  
Heng Zhang ◽  
Kai Wang ◽  
...  

Through a new synthetic route, three ruthenium-phenanthroline porphyrins (RPP1, RPP2 and RPP3) were prepared. Their photophysical and photochemical properties, such as DNA photocleavage activity, singlet-oxygen photogeneration and two-photon absorption (2PA) were evaluated. These porphyrins 1–3 had substantial photocleavage activities, with 71%, 74% and 38% observed at 20 μM. The porphyrins with different substituents on phenathroline group had similar singlet oxygen quantum yields, with ΦΔ values at 0.52, 0.47 and 0.41, respectively. The 2PA cross-section (σ(2)) values of RPP 1–3, measured by the Z-scan method, were calculated to be 152, 172 and 135 GM, respectively, which were around 5-fold higher than that of H2TPP . Thus, these porphyrins, with their good photocleavage activities, 1 O 2 quantum yields and high 2PA cross section, suggest great potential as photodynamic therapeutic agents.


2010 ◽  
Vol 14 (07) ◽  
pp. 582-591 ◽  
Author(s):  
Veronika Novakova ◽  
Eva H. Mørkved ◽  
Miroslav Miletin ◽  
Petr Zimcik

Octasubstituted zinc tetrapyrazinoporphyrazines with four N,N-dimethylaminophenyls and four phenyl or pyridin-3-yl substituents were synthesized and fully characterized. Their fluorescence quantum yields in DMF or pyridine were very low, almost undetectable, as a consequence of ultrafast intramolecular charge transfer. Titration of their DMF solutions with sulfuric acid led to increase of the fluorescence quantum yields by two orders of magnitude when the full protonation of peripheral substituents was achieved. Intramolecular charge transfer is no longer a favorable way of excited-state relaxation at full protonation of N,N-dimethylaminophenyl substituents because of loss of donor centers (free electron pair on its nitrogen). Similarly, singlet oxygen quantum yields also increased by two orders of magnitude when sulfuric acid was added to tetrapyrazinoporphyrazine solutions in DMF. Protonation at azomethine nitrogens of tetrapyrazinoporphyrazine macrocycle was observed at higher acid concentrations and it led to considerable decrease of fluorescence quantum yields. Octaphenyl zinc tetrapyrazinoporphyrazine and octa(pyridin-3-yl) zinc tetrapyrazinoporphyrazine were used as controls without intramolecular charge transfer. Their fluorescence and singlet oxygen quantum yields were high in DMF and decreased at higher concentrations of sulfuric acid due to protonation of azomethine nitrogens. The results suggest that the photophysical and photochemical properties of studied compounds may be controlled by changes of pH of medium.


2020 ◽  
Vol 25 (01) ◽  
pp. 66-74
Author(s):  
Kevser Harmandar ◽  
Esra N. Kaya ◽  
Mehmet F. Saglam ◽  
Ibrahim F. Sengul ◽  
Devrim Atilla

Tetra substituted peripheral and non-peripheral Zn(II) phthalocyanines were successfully synthesized employing 4-(bis(3-methyl-1H-indol-2-yl)methyl)phenol as a starting material. The structure of these synthesized compounds was confirmed using 1H NMR, [Formula: see text]C NMR, infrared (IR), UV-vis, and MALDI-TOF spectral data. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of all synthesized peripheral and non-peripheral compounds were investigated in order to determine the potential of these compounds for application in photodynamic therapy.


2020 ◽  
Vol 24 (01n03) ◽  
pp. 330-339
Author(s):  
Flávio Figueira ◽  
Leandro M. O. Lourenço ◽  
Maria G. P. M. S. Neves ◽  
José A. S. Cavaleiro ◽  
João P. C. Tomé

The synthesis of derivatives bearing glucose or galactose units linked by an acrylate spacer to one free meso position of a bis-aryl-porphyrin macrocycle was developed and characterized by standard spectroscopic techniques. The new mono-substituted gluco- and galacto-porphyrin derivatives 5–8 present an alternative to the widespread tetra-aryl porphyrin functionalization. Singlet oxygen studies showed a comparable singlet oxygen production with TPP. Furthermore, the less bulky architectures here synthesized present an opportunity to enhance the PDT and PDI capabilities of glycoporphyrins with a simple synthetic modification at one of the meso positions.


2005 ◽  
Vol 70 (18) ◽  
pp. 7065-7079 ◽  
Author(s):  
Christian B. Nielsen ◽  
Mette Johnsen ◽  
Jacob Arnbjerg ◽  
Michael Pittelkow ◽  
Sean P. McIlroy ◽  
...  

2018 ◽  
Vol 22 (01n03) ◽  
pp. 46-55 ◽  
Author(s):  
İlke Gürol ◽  
Gülay Gümüş ◽  
Deniz Kutlu Tarakci ◽  
Ömer Güngör ◽  
Mahmut Durmuş ◽  
...  

The synthesis and characterization of novel zinc(II) (1a–4a) and oxo-titanium(IV) (1b–4b) phthalocyanine derivatives bearing 1H,1H-nona?uoro-3,6-dioxaheptan-1-ol groups are described for the first time. These phthalocyanines (1a–4a and 1b–4b) were characterized by elemental analysis and different spectroscopic techniques such as UV-vis, [Formula: see text]H NMR, FTIR and mass. Furthermore, the photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation) properties of these phthalocyanines were investigated in tetrahydrofuran (THF) solution. The influence of the number of the substituted groups (tetra or octa), position of the substituents (peripheral or non-peripheral) and central metal atom (zinc or titanium) on the photophysical and photochemical properties of these phthalocyanines were evaluated.


Sign in / Sign up

Export Citation Format

Share Document