Ab initio powder X-ray diffraction structural analysis of bispidine based 1D coordination polymers: insights into their guest responsive behaviour

2019 ◽  
Vol 48 (44) ◽  
pp. 16756-16763 ◽  
Author(s):  
Martina Lippi ◽  
Massimo Cametti ◽  
Javier Martí-Rujas

The first ab initio synchrotron powder XRD structure solution of a desolvated 1D bispidine coordination polymer (CP) is reported, providing valuable insights into the stability, dynamic and guest responsive behavior of a new class of CPs.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


1997 ◽  
Vol 52 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Rolf W. Saalfrank ◽  
Roland Harbig ◽  
Oliver Struck ◽  
Frank Hampel ◽  
Eva Maria Peters ◽  
...  

Reaction of a methanolic copper(II) acetate solution with tetrazolyl enol derivatives 2a or 2b leads to the formation of the corresponding lD-coordination polymer 1∞[CuL2] 3a and pseudo 1D-coordination polymer [CuL2]2 3b, respectively. On the contrary, reaction of 2c with methanolic copper(II) acetate solution yields OH-bridged 1D-coordination polymer 1∞[CuL2(MeOH)2 3c. Single-crystal X-ray diffraction of the supramolecular species 3 established unequivocally the structures of the stairlike coordination compounds. Reaction of a methanolic copper(II) acetate solution with amidotetrazole derivative 6 leads to the formation of the lD-coordination polymer 1∞ [CuL2] 7. The structure of 7 has been established by X-ray structure analysis


2014 ◽  
Vol 67 (11) ◽  
pp. 1679
Author(s):  
Sheng Zhang ◽  
Qi Yang ◽  
Xiangyu Liu ◽  
Gang Xie ◽  
Qing Wei ◽  
...  

Five coordination polymers, [Cu(L)2]n (1), {[Cu(L)(Cl)(H2O)]·H2O}2n (2), [KCu(L)(μ-Cl)2]n (3), [Cu(L)(Br)H2O]n (4), and {[Cu0.5(HL)(H2O)](NO3)·H2O}2n (5) (HL = 5-methylpyrazine-2-carboxylic acid) were obtained by reactions of a pyramidal CuII-containing ligand, {[Cu(L)2(H2O)]·3H2O}n (LCu), with Gd(ClO4)3·6H2O, GdCl3·6H2O, GdCl3·6H2O/KCl, GdBr3·6H2O, or Gd(NO3)3·6H2O in water. Structural analysis reveals that the structures of these compounds range from a 0D block to a 2D network with modification of the environment of the CuII ions compared with LCu. Interestingly, there occurred a series of reversible dissolution/reorganization equilibriums between the initial reactants and the final products 1–5, which were determined as enthalpy/entropy driven chemical equilibriums by single crystal X-ray diffraction and microcalorimetry. In addition, the thermal stability of 1–4 and the magnetic property of 2 are discussed.


2019 ◽  
Vol 38 (1) ◽  
pp. 19 ◽  
Author(s):  
Semih Gorduk ◽  
Hakan Yilmaz ◽  
Omer Andac

In this study, two new coordination polymers of Cu(II) and Cd(II) ions with pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole were synthesized. The structures of these coordination polymers were characterized with elemental analysis, infrared spectroscopy, thermal analysis, powder X-ray diffraction, and magnetic susceptibility techniques. According to the results of the thermal analysis, the coordination polymers that contained water molecules decomposed below 100 °C, and the final products for both coordination polymers were the related metal oxides in an oxygen atmosphere. Powder X-ray diffraction analysis revealed that the coordination polymers were in the crystalline form. The hydrogen storage capacities and surface areas of the coordination polymers were also determined. The highest hydrogen storage capacities were measured as 296 ml/g for the Cu(II) coordination polymer and 330 ml/g for the Cd(II) coordination polymer at approximately 75 bar and 75 K.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5400
Author(s):  
Roman D. Marchenko ◽  
Taisiya S. Sukhikh ◽  
Alexey A. Ryadun ◽  
Andrei S. Potapov

Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.


2020 ◽  
Vol 49 (40) ◽  
pp. 13897-13916
Author(s):  
Javier Martí-Rujas

Ab initio powder XRD structure solution and MOFs.


2018 ◽  
Vol 74 (6) ◽  
pp. 734-741 ◽  
Author(s):  
Olga Drath ◽  
Robert W. Gable ◽  
Colette Boskovic

The combination of cobalt, 3,5-di-tert-butyldioxolene (3,5-dbdiox) and 1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane (tpch) yields two coordination polymers with different connectivities, i.e. a one-dimensional zigzag chain and a two-dimensional sheet. Poly[[bis(3,5-di-tert-butylbenzene-1,2-diolato)bis(1,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-yl-3-olato)[μ4-1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane]cobalt(III)]–ethanol–water 1/7/5], {[Co2(C14H20O2)4(C26H24N4O)]·7C2H5OH·5H2O} n or {[Co2(3,5-dbdiox)4(tpch)}·7EtOH·5H2O} n , is the second structurally characterized example of a two-dimensional coordination polymer based on linked {Co(3,5-dbdiox)2} units. Variable-temperature single-crystal X-ray diffraction studies suggest that catena-poly[[[(3,5-di-tert-butylbenzene-1,2-diolato)(1,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-yl-3-olato)cobalt(III)]-μ-1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane]–ethanol–water (1/1/5)], {[Co(C14H20O2)2(C26H24N4O)]·C2H5OH·5H2O} n or {[Co(3,5-dbdiox)2(tpch)]·EtOH·5H2O} n , undergoes a temperature-induced valence tautomeric interconversion.


1981 ◽  
Vol 8 ◽  
Author(s):  
R. C. O'handley ◽  
N. J. Grant

ABSTRACTSeveral new magnetic amorphous alloys containing early transition metals (TE) and having reduced metalloid (M) content have been melt spun. Some properties of three examples of this new class, 1) Co80Nb14B6, 2) Co84Nb10B6, and 3) Fe81Nb5B14, are presented. The dominant late transition meta1 (TL) content assures an appreciable magnetic moment while the presence of an early transition metal significantly enhances the stability against crystallization. Crystallization temperatures are 1) 742K, 2) 698K, and 3) 762K for the three alloys, respectively. X-ray diffraction patterns show the materials to be amorphous and to exhibit a large-r correlation length (approximately 2.0 A) that is shorter than is typiclly observed in TL80M20 glasses containing more than one transition meta) species (approximately 2.3 − 2.5A). The coercivities of the glassy compositions range from 30 to 70 m0e.


2018 ◽  
Vol 74 (2) ◽  
pp. 218-223 ◽  
Author(s):  
Ning-Ning Ji ◽  
Zhi-Qiang Shi ◽  
Hai-Liang Hu

The design and synthesis of coordination polymers with a self-penetrating architecture has attracted much interest not only due to their interesting structures but also due to their potential applications. 5,5′-Bis(pyridin-4-yl)-2,2′-bithiophene (bpbp), as a conjugated bithiophene ligand, can exhibit trans and cis conformations and this can lead to the construction of a self-penetrating architecture. In addition, the semi-rigid ancillary ligand 4,4′-oxybis(benzoic acid) (H2oba) can adopt different coordination modes, resulting in coordination polymers with high-dimensional skeletons. A new CdII coordination polymer based on mixed ligands, namely poly[diaquapentakis[μ-5,5′-bis(pyridin-4-yl)-2,2′-bithiophene-κ2 N:N′]bis(nitrato-κ2 O,O′)tetrakis(μ3-4,4′-oxydibenzoato)-κ10 O:O,O′:O′′,O′′′;κ6 O:O′:O′′-pentacadmium(II)], [Cd5(C14H14O5)4(NO3)2(C18H12N2S2)5(H2O)2] n , (I), has been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction indicates that there are three crystallographically independent CdII cations, three bpbp ligands, two deprotonated oba2− ligands, one nitrate ligand and one coordinated water molecule in the asymmetric unit. One CdII centre is seven-coordinated, exhibiting a distorted {CdN2O5} pentagonal bipyramidal geometry, while the other two Cd centres are both six-coordinated, showing slightly distorted {CdN2O4} octahedral geometries. The most interesting feature is the co-existence of trans and cis conformations in a single net, allowing structural interpenetration via self-threading and yet the expected self-penetrating structure was obtained. Topological analysis shows that the whole three-dimensional framework can be classified as a 3-nodal (4,6,6)-c net with Schläfli symbol {613.82}2{66}, which is a new topology. Furthermore, the luminescence properties of (I) were examined in the solid state at room temperature.


Sign in / Sign up

Export Citation Format

Share Document