Interactive influence of extracellular polymeric substances (EPS) and electrolytes on the colloidal stability of silver nanoparticles

2020 ◽  
Vol 7 (1) ◽  
pp. 186-197 ◽  
Author(s):  
Ishara Fernando ◽  
Dan Lu ◽  
Yan Zhou

The colloidal stability of silver nanoparticles (AgNPs) was evaluated using time-resolved dynamic light scattering, electrophoretic mobility and dissolved Ag concentration in the presence of electrolytes and extracellular polymeric substances (EPS).

2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Leiriana Aparecida Pinto Gontijo ◽  
Ellen Raphael ◽  
Daniela Pereira Santos Ferrari ◽  
Jefferson Luis Ferrari ◽  
Juliana Pereira Lyon ◽  
...  

ABSTRACT This paper reports citrate-stabilized silver nanoparticles (AgNPs) synthesized by nitrate ion chemical reduction with sodium borohydride, at different pHs (2–9). The AgNPs synthesized by this method exhibited size distribution from 5 to 249 nm, depending on pH, as determined by dynamic light scattering, and morphology spherical, as determined by transmission electron microscopy. In pH range 3–7 occurred aggregation of the nanoparticles. The size distribution depending on pH was determined by dynamic light scattering. The zeta potential was determined, and the colloidal stability was correlated with nanoparticles aggregation at different pHs. The size-dependent antimicrobial activity was evaluated for two solutions, wherein both samples exhibited antimicrobial activity, although the smallest AgNPs without agglomeration have enhanced antimicrobial properties.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 776 ◽  
Author(s):  
Erzsébet Illés ◽  
Márta Szekeres ◽  
Ildikó Tóth ◽  
Katalin Farkas ◽  
Imre Földesi ◽  
...  

For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710–720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid–base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity (451 mM−1s−1) found in literature.


2021 ◽  
Vol 18 (8) ◽  
pp. 086002
Author(s):  
A A Nastulyavichus ◽  
S I Kudryashov ◽  
E R Tolordava ◽  
L F Khaertdinova ◽  
Yu K Yushina ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander V. Malm ◽  
Jason C. W. Corbett

Abstract Dynamic Light Scattering (DLS) is a ubiquitous and non-invasive measurement for the characterization of nano- and micro-scale particles in dispersion. The sixth power relationship between scattered intensity and particle radius is simultaneously a primary advantage whilst rendering the technique sensitive to unwanted size fractions from unclean lab-ware, dust and aggregated & dynamically aggregating sample, for example. This can make sample preparation iterative, challenging and time consuming and often requires the use of data filtering methods that leave an inaccurate estimate of the steady state size fraction and may provide no knowledge to the user of the presence of the transient fractions. A revolutionary new approach to DLS measurement and data analysis is presented whereby the statistical variance of a series of individually analysed, extremely short sub-measurements is used to classify data as steady-state or transient. Crucially, all sub-measurements are reported, and no data are rejected, providing a precise and accurate measurement of both the steady state and transient size fractions. We demonstrate that this approach deals intrinsically and seamlessly with the transition from a stable dispersion to the partially- and fully-aggregated cases and results in an attendant improvement in DLS precision due to the shorter sub measurement length and the classification process used.


2000 ◽  
Vol 33 (3) ◽  
pp. 900-905 ◽  
Author(s):  
Tomohisa Norisuye ◽  
Masao Inoue ◽  
Mitsuhiro Shibayama ◽  
Ryo Tamaki ◽  
Yoshiki Chujo

2015 ◽  
Vol 216 ◽  
pp. 235-239 ◽  
Author(s):  
Yue Sun ◽  
Haiyang Zhao ◽  
Imene Boussouar ◽  
Fan Zhang ◽  
Demei Tian ◽  
...  

2014 ◽  
Vol 625 ◽  
pp. 168-171 ◽  
Author(s):  
Qi Hwa Ng ◽  
Jit Kang Lim ◽  
Ahmad Abdul Latif ◽  
Boon Seng Ooi ◽  
Siew Chun Low

The major challenge in assessing the performance of magnetite nanoparticles (MNPs) in removing pollutants from wastewater is the agglomeration of those nanoparticles into a bulky cluster size. In this study, different concentration of poly (sodium 4-styrene sulfonate) (PSS) were coated around the surface of MNPs to increase the particles’ colloidal stability. Both dynamic light scattering (DLS) and thermogravimetric (TGA) analyses have proved the success coating of PSS onto MNPs, whereby the cluster size of the functionalized MNPs were shown notably depends on the applied dosage of PSS. PSS/MNPs functionalization at molar ratio of 6:1 was found to have the smallest cluster size at 148.4 ± 0.22 nm. These results have provided some insight about the particles’ colloidal stability that could be useful for environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document