In situ TEM observation of Au–Cu2O core–shell growth in liquids

Nanoscale ◽  
2019 ◽  
Vol 11 (21) ◽  
pp. 10486-10492 ◽  
Author(s):  
Fu-Chun Chen ◽  
Jui-Yuan Chen ◽  
Ya-Hsuan Lin ◽  
Ming-Yu Kuo ◽  
Yung-Jung Hsu ◽  
...  

The formation of different shapes Au–Cu2O core–shell nanoparticles was investigated by in situ liquid cell transmission electron microscopy (LCTEM).

Nanoscale ◽  
2021 ◽  
Author(s):  
Feng Xu ◽  
Wei Wei ◽  
Tingting Bai ◽  
Ruining Fu ◽  
Litao Sun ◽  
...  

Controlling the growth, structure and morphology of core-shell nanoparticles (NPs) is significant for catalytic applications, which can be achieved by adding chemical additives to the synthesis reaction mixture. However, achieving...


2020 ◽  
Vol MA2020-01 (45) ◽  
pp. 2572-2572
Author(s):  
Shin-Bei Tsai ◽  
Chih-Yang Huang ◽  
Jui-Yuan Chen ◽  
Wen-Wei Wu

2012 ◽  
Vol 531 ◽  
pp. 211-214 ◽  
Author(s):  
Jun Jie Jing ◽  
Ji Min Xie ◽  
Hui Ru Qin ◽  
Wen Hua Li ◽  
Ming Mei Zhang

Nickel(Ni)-silver(Ag) core-shell nanoparticles with different shell thickness were synthesized with Ni nanoparticles by liquid phase reduction technique form water solution. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and inductively coupled plasma spectroscopy (ICP). The results showed that the Ni nanoparticles are in sphere shape and the average diameter is 104nm , the nickel(Ni)-silver(Ag) core-shell nanoparticles has good crystallinity and the thinkness of Ag nanoshells could be effectively controlled by changing the concentration of silver nitrate. The product can be used for nickel-based conductive paste preparation because of the surface character of Ag and the magnetic property of Ni


NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350061 ◽  
Author(s):  
PENG AN ◽  
FANG ZUO ◽  
XINHUA LI ◽  
YUANPENG WU ◽  
JUNHUA ZHANG ◽  
...  

A biomimetic and facile approach for integrating Fe 3 O 4 and Au with polydopamine (PDA) was proposed to construct gold-coated Fe 3 O 4 nanoparticles ( Fe 3 O 4@ Au – PDA ) with a core–shell structure by coupling in situ reduction with a seed-mediated method in aqueous solution at room temperature. The morphology, structure and composition of the core–shell structured Fe 3 O 4@ Au – PDA nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The formation process of Au shell was assessed using a UV-Vis spectrophotometer. More importantly, according to investigating changes in PDA molecules by Fourier transform infrared spectroscopy (FTIR) and in preparation process of the zeta-potential data of nanoparticles, the mechanism of core–shell structure formation was proposed. Firstly, PDA-coated Fe 3 O 4 are obtained using dopamine (DA) self-polymerization to form thin and surface-adherent PDA films onto the surface of a Fe 3 O 4 "core". Then, Au seeds are attached on the surface of PDA-coated Fe 3 O 4 via electrostatic interaction in order to serve as nucleation centers catalyzing the reduction of Au 3+ to Au 0 by the catechol groups in PDA. Accompanied by the deposition of Au , PDA films transfer from the surface of Fe 3 O 4 to that of Au as stabilizing agent. In order to confirm the reasonableness of this mechanism, two verification experiments were conducted. The presence of PDA on the surface of Fe 3 O 4@ Au – PDA nanoparticles was confirmed by the finding that glycine or ethylenediamine could be grafted onto Fe 3 O 4@ Au – PDA nanoparticles through Schiff base reaction. In addition, Fe 3 O 4@ Au – DA nanoparticles, in which DA was substituted for PDA, were prepared using the same method as that for Fe 3 O 4@ Au – PDA nanoparticles and characterized by UV-Vis, TEM and FTIR. The results validated that DA possesses multiple functions of attaching Au seeds as well as acting as both reductant and stabilizing agent, the same functions as those of PDA.


2014 ◽  
Vol 20 (S3) ◽  
pp. 616-617 ◽  
Author(s):  
Cecile S. Bonifacio ◽  
Sophie Carenco ◽  
Miquel Salmeron ◽  
Judith C. Yang

Sign in / Sign up

Export Citation Format

Share Document