Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing

Nanoscale ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 1419-1424
Author(s):  
Min Su Kim ◽  
Do Hyun Kim ◽  
Junsang Lee ◽  
Hee Tae Ahn ◽  
Moon Il Kim ◽  
...  

A reagent-free colorimetric detection method using mesoporous cerium oxide with a large pore size trapping an oxidative enzyme has been developed and glucose is sensitively detected with a limit of detection of 10 μM by supporting glucose oxidase on mesoporous cerium oxide.

2014 ◽  
Vol 53 (34) ◽  
pp. 9035-9040 ◽  
Author(s):  
Yuhui Li ◽  
Wei Luo ◽  
Nan Qin ◽  
Junping Dong ◽  
Jing Wei ◽  
...  

2014 ◽  
Vol 126 (34) ◽  
pp. 9181-9186 ◽  
Author(s):  
Yuhui Li ◽  
Wei Luo ◽  
Nan Qin ◽  
Junping Dong ◽  
Jing Wei ◽  
...  

2012 ◽  
Vol 554-556 ◽  
pp. 620-623
Author(s):  
Xiang Diao

In this study, large pore size and highly ordered mesoporous molecular sieve SBA-15 was successfully synthesized in the acidic medium by using n-propanol as the pore-expanding agent, and tetraethyl orthosilicate (TEOS) as silicon source and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymer (P123 triblock copolymer) as a template agent. The samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Nitrogen Adsorption-Desorption. It is found that the particles of mesoporous molecular sieve SBA-15 have regular morphology and ordered pore structure, and also have high specific surface area, large pore size and pore volume.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14700-14709
Author(s):  
Rintumoni Paw ◽  
Moushumi Hazarika ◽  
Purna K. Boruah ◽  
Amlan Jyoti Kalita ◽  
Ankur K. Guha ◽  
...  

Synthesis of Ag nanoparticles using Allin based garlic extract for highly sensitive and selective detection of metal ions Hg2+ and Sn2+ in water. The limit of detection (LoD) for Hg2+ and Sn2+ ions were found as 15.7 nM and 11.25 nM respectively.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 85
Author(s):  
Wassa Waiwinya ◽  
Thitirat Putnin ◽  
Dechnarong Pimalai ◽  
Wireeya Chawjiraphan ◽  
Nuankanya Sathirapongsasuti ◽  
...  

An immobilization-free electrochemical sensor coupled with a graphene oxide (GO)-based aptasensor was developed for glycated human serum albumin (GHSA) detection. The concentration of GHSA was monitored by measuring the electrochemical response of free GO and aptamer-bound GO in the presence of glycated albumin; their currents served as the analytical signals. The electrochemical aptasensor exhibited good performance with a base-10 logarithmic scale. The calibration curve was achieved in the range of 0.01–50 µg/mL. The limit of detection (LOD) was 8.70 ng/mL. The developed method was considered a one-drop measurement process because a fabrication step and the probe-immobilization process were not required. This simple sensor offers a cost-effective, rapid, and sensitive detection method, and could be an alternative approach for determination of GHSA levels.


Sign in / Sign up

Export Citation Format

Share Document