scholarly journals Immobilization-Free Electrochemical Sensor Coupled with a Graphene-Oxide-Based Aptasensor for Glycated Albumin Detection

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 85
Author(s):  
Wassa Waiwinya ◽  
Thitirat Putnin ◽  
Dechnarong Pimalai ◽  
Wireeya Chawjiraphan ◽  
Nuankanya Sathirapongsasuti ◽  
...  

An immobilization-free electrochemical sensor coupled with a graphene oxide (GO)-based aptasensor was developed for glycated human serum albumin (GHSA) detection. The concentration of GHSA was monitored by measuring the electrochemical response of free GO and aptamer-bound GO in the presence of glycated albumin; their currents served as the analytical signals. The electrochemical aptasensor exhibited good performance with a base-10 logarithmic scale. The calibration curve was achieved in the range of 0.01–50 µg/mL. The limit of detection (LOD) was 8.70 ng/mL. The developed method was considered a one-drop measurement process because a fabrication step and the probe-immobilization process were not required. This simple sensor offers a cost-effective, rapid, and sensitive detection method, and could be an alternative approach for determination of GHSA levels.

2021 ◽  
pp. 174751982198995
Author(s):  
Yi Wang ◽  
Jianshe Tang ◽  
Li Xiang

A simple and efficient electrochemical sensor based on a homemade reshaped micropipette tip carbon paste electrode is reported. Molecularly imprinted polymer membranes of graphene oxide and polypyrrole are synthesized and modified on the surface of micropipette tip carbon paste electrode. The merit of the method is evaluated under optimized conditions via differential pulse voltammetrics. The prepared sensor exhibits remarkable sensitivity toward dopamine with a linear range of 6.4 × 10−8–2 × 10−4 M, with a limit of detection as low as 1 × 10−8 M. The proposed method is applied for the determination of dopamine in urine samples by the standard addition route. A range of 1 × 10−7–1 × 10−4 M is obtained from these samples. The relative recoveries are in the range of 95.2%–104%. The proposed method has acceptable performance for the determination of dopamine in real samples with excellent sensitivity and selectivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jifang Chen ◽  
Ziqing Gao ◽  
Ruonan Yang ◽  
Huiling Jiang ◽  
Lin Bai ◽  
...  

New methylene blue (NMB), a phenothiazine dye, was covalently bonded to graphene oxide (GO) using glutaraldehyde as a crosslinking agent, which was characterized by spectroscopic techniques and electrochemistry. The obtained GO–NMB nanocomposite was used as interface material to construct a novel electrochemical sensor for the determination of hydrogen peroxide (H2O2). The electrochemical sensor based on GO–NMB nanocomposite exhibited excellent electrocatalytic activity for the reduction of hydrogen peroxide (H2O2), which was also enhanced by GO within the GO–NMB nanocomposite. With the optimized experimental conditions, the developed sensor showed high sensitivity (79.4 μA mM−1 cm−2) for electrocatalytic determination of H2O2 at the applied potential of −0.50 V in the concentration range of 0.000333 to 2.28 mΜ. The low limit of detection (1.35 μM), good reproducibility, and high stability of the sensor suggests that the electrochemical sensor based on the GO–NMB nanocomposite possesses obvious advantages, which paves a new avenue to functionalize GO for obtaining electrode interface materials.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 298
Author(s):  
Alexander Ecke ◽  
Rudolf J. Schneider

Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β‑lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin.


RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 12227-12234
Author(s):  
Hisham S. M. Abd-Rabboh ◽  
Abd El-Galil E. Amr ◽  
Elsayed A. Elsayed ◽  
Ahmed Y. A. Sayed ◽  
Ayman H. Kamel

Robust, reliable and cost-effective paper-based analytical device for potentiometric pholcodine (opiate derivative drug) ion sensing has been prepared and characterized.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25702-25709 ◽  
Author(s):  
R. Karthik ◽  
Mani Govindasamy ◽  
Shen-Ming Chen ◽  
Tse-Wei Chen ◽  
J. Vinoth kumar ◽  
...  

An electrochemical sensor based on graphene oxide modified glassy carbon electrode for the determination of anti-cancer drug flutamide.


2014 ◽  
Vol 68 (11) ◽  
Author(s):  
Pavel Mikuška ◽  
Lukáš Bružeňák ◽  
Zbyněk Večeřa

AbstractA method for the rapid and sensitive determination of peroxyacetyl nitrate (PAN) in air based on a chemiluminescence reaction with an alkaline solution of luminol in the chemiluminescence aerosol detector is described. The PAN is chromatographically separated from nitrogen dioxide and ozone in a packed column filled with 5 % OV-1 on Chromosorb 30/60 and the eluted PAN is detected via the direct reaction with the luminol solution consisting of 0.002 mol L−1 luminol, 1 vol. % Brij-35 and 0.1 mol L−1 KOH. The limit of detection is 14.9 ng m−3 (3 ppt) of PAN. Alternatively, the PAN after separation is thermally converted to NO2 which is detected by the chemiluminescence reaction with a solution consisting of 0.002 mol L−1 luminol, 0.5 mol L−1 KOH, 0.2 mol L−1 Na2SO3, 0.1 mol L−1 KI, 0.05 mol L−1 EDTA and 0.5 vol. % triton X-100. The alternative approach affords the simultaneous determination of PAN and NO2. The limit of detection is 50 ppt of PAN and 50 ppt of NO2. The time resolution is 3 min. The method was applied to the measurement of ambient peroxyacetyl nitrate in air.


Author(s):  
Abolfazl Darroudi ◽  
Saeid Nazari ◽  
Seyed Ali Marashi ◽  
Mahdi Karimi-Nazarabad

Abstract An accurate, rapid, simple, and novel technique was developed to determine simvastatin (SMV). In this research, a screen-printed electrode (SPE) was deposited with graphene oxide (GO) and sodium dodecyl sulfate (SDS), respectively. For the first time, the handmade modified SPE measured the SMV by differential pulse voltammetry (DPV) with high sensitivity and selectivity. The results of cyclic voltammetry indicated the oxidation irreversible process of SMV. Various parameters (pH, concentration, scan rate, support electrolyte) were performed to optimize the conditions for the determination of SMV. Under the optimum experiment condition of 0.1 M KNO3 as support electrolyte and pH 7.0, the linear range was achieved for SMV concentration from 1.8 to 36.6 µM with a limit of detection (LOD), and a limit of quantitation (LOQ) of 0.06 and 1.8 µM, respectively. The proposed method was successfully utilized to determine SMV in tablets and urine samples with a satisfactory recovery in the range of 96.2 to 103.3%.


2019 ◽  
Vol Vol. 14, No.1 ◽  
pp. 5-14 ◽  
Author(s):  
Anastasiya Tkachenko ◽  
Mykyta Onizhuk ◽  
Oleg Tkachenko ◽  
Leliz T. Arenas ◽  
Edilson V. Benvenutt ◽  
...  

In the present study, an electrochemical sensor based on the electrode (SiMImCl/C) consisting of graphite and silica, grafted with 1-n-propyl-3-methylimidazolium chloride was used for ascorbic acid (AA) quantification in pharmaceuticals and food formulations. Cyclic voltammetry and electrochemical impedance spectroscopy were applied for electrochemical characterization of the SiMImCl/C electrode. The cyclic voltammetry study revealed that the oxidation of AA on this electrode is an irreversible process, realized by adsorption and diffusion limited step. The differential pulse voltammetry was applied to develop a procedure for the AA determination. The linear range was found to be 0.3–170 μmol L-1 and the limit of detection – 0.1 μmol L-1. The proposed SiMImCl/C electrode has long term stability and does not show electrochemical activity towards the analytes, which commonly coexist with AA. The sensor was successfully used for quantification of AA in food and pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document