scholarly journals Identification of mine water inrush using laser-induced fluorescence spectroscopy combined with one-dimensional convolutional neural network

RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7673-7679 ◽  
Author(s):  
Feng Hu ◽  
Mengran Zhou ◽  
Pengcheng Yan ◽  
Datong Li ◽  
Wenhao Lai ◽  
...  

LIF spectroscopy combined with 1D CNN can identify mine water inrush quickly and accurately without complicated pretreatment.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 262
Author(s):  
Chih-Yung Huang ◽  
Zaky Dzulfikri

Stamping is one of the most widely used processes in the sheet metalworking industry. Because of the increasing demand for a faster process, ensuring that the stamping process is conducted without compromising quality is crucial. The tool used in the stamping process is crucial to the efficiency of the process; therefore, effective monitoring of the tool health condition is essential for detecting stamping defects. In this study, vibration measurement was used to monitor the stamping process and tool health. A system was developed for capturing signals in the stamping process, and each stamping cycle was selected through template matching. A one-dimensional (1D) convolutional neural network (CNN) was developed to classify the tool wear condition. The results revealed that the 1D CNN architecture a yielded a high accuracy (>99%) and fast adaptability among different models.


2021 ◽  
Vol 13 (8) ◽  
pp. 1519
Author(s):  
Kensuke Kawamura ◽  
Tomohiro Nishigaki ◽  
Andry Andriamananjara ◽  
Hobimiarantsoa Rakotonindrina ◽  
Yasuhiro Tsujimoto ◽  
...  

As a proximal soil sensing technique, laboratory visible and near-infrared (Vis-NIR) spectroscopy is a promising tool for the quantitative estimation of soil properties. However, there remain challenges for predicting soil phosphorus (P) content and availability, which requires a reliable model applicable for different land-use systems to upscale. Recently, a one-dimensional convolutional neural network (1D-CNN) corresponding to the spectral information of soil was developed to considerably improve the accuracy of soil property predictions. The present study investigated the predictive ability of a 1D-CNN model to estimate soil available P (oxalate-extractable P; Pox) content in soils by comparing it with partial least squares (PLS) and random forest (RF) regressions using soil samples (n = 318) collected from natural (forest and non-forest) and cultivated (upland and flooded rice fields) systems in Madagascar. Overall, the 1D-CNN model showed the best predictive accuracy (R2 = 0.878) with a highly accurate prediction ability (ratio of performance to the interquartile range = 2.492). Compared to the PLS model, the RF and 1D-CNN models indicated 4.37% and 23.77% relative improvement in root mean squared error values, respectively. Based on a sensitivity analysis, the important wavebands for predicting soil Pox were associated with iron (Fe) oxide, organic matter (OM), and water absorption, which were previously known wavelength regions for estimating P in soil. These results suggest that 1D-CNN corresponding spectral signatures can be expected to significantly improve the predictive ability for estimating soil available P (Pox) from Vis-NIR spectral data. Rapid and accurate estimation of available P content in soils using our results can be expected to contribute to effective fertilizer management in agriculture and the sustainable management of ecosystems. However, the 1D-CNN model will require a large dataset to extend its applicability to other regions of Madagascar. Thus, further updates should be tested in future studies using larger datasets from a wide range of ecosystems in the tropics.


Sign in / Sign up

Export Citation Format

Share Document