scholarly journals Counterintuitive solvation effect of ionic-liquid/DMSO solvents on acidic C–H dissociation and insight into respective solvation

2020 ◽  
Vol 11 (12) ◽  
pp. 3365-3370 ◽  
Author(s):  
Wenzhi Luo ◽  
Chong Mao ◽  
Pengju Ji ◽  
Jun-Yan Wu ◽  
Jin-Dong Yang ◽  
...  

The dependence of PhCH(CN)2 pKa on the molar fraction of ionic liquids in ionic–molecular binary mixtures showed a nonlinear three-fragment plot, which was rationalized for the first time by the respective roles of each solvent component for solvation.

2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


2020 ◽  
Author(s):  
Swati Arora ◽  
Julisa Rozon ◽  
Jennifer Laaser

<div>In this work, we investigate the dynamics of ion motion in “doubly-polymerized” ionic liquids (DPILs) in which both charged species of an ionic liquid are covalently linked to the same polymer chains. Broadband dielectric spectroscopy is used to characterize these materials over a broad frequency and temperature range, and their behavior is compared to that of conventional “singly-polymerized” ionic liquids (SPILs) in which only one of the charged species is attached to the polymer chains. Polymerization of the DPIL decreases the bulk ionic conductivity by four orders of magnitude relative to both SPILs. The timescales for local ionic rearrangement are similarly found to be approximately four orders of magnitude slower in the DPILs than in the SPILs, and the DPILs also have a lower static dielectric constant. These results suggest that copolymerization of the ionic monomers affects ion motion on both the bulk and the local scales, with ion pairs serving to form strong physical crosslinks between the polymer chains. This study provides quantitative insight into the energetics and timescales of ion motion that drive the phenomenon of “ion locking” currently under investigation for new classes of organic electronics.</div>


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6344
Author(s):  
Philipp S. Borchers ◽  
Patrick Gerlach ◽  
Yihan Liu ◽  
Martin D. Hager ◽  
Andrea Balducci ◽  
...  

In this work, two new redox-active ionic liquids, one based on 2,2,6,6-tetramethylpiperidine-N-oxide and the other based on 4,4′-bipyridine, are synthesized and characterized. A ferrocene-based redox-active ionic liquid is used for referencing the results. All ionic liquids are formed via salt-metathesis from halogenate to bis(trifluoromethylsulfonyl)imide. Their fundamental thermal characteristics are assessed with differential scanning calorimetry. While the imidazolium ionic liquids show no melting point, the phase transition is well observable for the viologen-based ionic liquid. The properties of the neat redox-active ionic liquids and of binary mixtures containing these ionic liquids (0.1 m) and 1-butyl-1-methyl pyrrolidinium-bis(trifluoromethylsulfonyl)imide have been investigated. Finally, the use of these binary mixtures in combination with activated carbon-based electrodes has been considered in view of the use of these redox-active electrolytes in supercapacitors.


2017 ◽  
Vol 7 (10) ◽  
pp. 2065-2073 ◽  
Author(s):  
Jie Deng ◽  
Bao-Hua Xu ◽  
Yao-Feng Wang ◽  
Xian-En Mo ◽  
Rui Zhang ◽  
...  

A highly efficient synthesis of isosorbide from sorbitol was developed using Brønsted acidic ionic liquids (BILs) as the catalyst for the first time.


2013 ◽  
Vol 675 ◽  
pp. 248-251
Author(s):  
Zhuo Li ◽  
Chang Ping Li

As a new environmentally friendly solvent, ionic liquids have been investigated widely. The lack of physico-chemical properties data of ionic liquids has become a bottleneck that restricts their applications. In this study, the investigation of the density for binary mixtures of CnpyNTf2 (n = 2, 4, 5) and methanol is measured using Westphal balance. This study would be very important for the application of binary mixtures of ionic liquid and methanol in developing new energy storage material.


2016 ◽  
Vol 52 (32) ◽  
pp. 5585-5588 ◽  
Author(s):  
Eduardo. J. M. Filipe ◽  
Pedro Morgado ◽  
Miguel Teixeira ◽  
Karina Shimizu ◽  
Nathalie Bonatout ◽  
...  

Langmuir films of [C18mim][NTf2] ionic liquid exhibited, for the first time, the reversible formation of crystalline-like structures at the surface of water, compatible with the formation of multilayers.


RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9423-9430 ◽  
Author(s):  
Ryohei Kakuchi ◽  
Ryo Ito ◽  
Shuhei Nomura ◽  
Hadi Abroshan ◽  
Kazuaki Ninomiya ◽  
...  

Mechanistic insights into organocatalytic properties of imidazolium-based ionic liquids led to improvements of cellulose modification reactions in ionic liquids.


RSC Advances ◽  
2017 ◽  
Vol 7 (23) ◽  
pp. 13876-13876
Author(s):  
Ryohei Kakuchi ◽  
Ryo Ito ◽  
Shuhei Nomura ◽  
Hadi Abroshan ◽  
Kazuaki Ninomiya ◽  
...  

Correction for ‘A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid’ by Ryohei Kakuchi et al., RSC Adv., 2017, 7, 9423–9430.


2018 ◽  
Author(s):  
Samuel W. Coles ◽  
Vladislav Ivanistsev

<div>In this article we discuss the nanostructure and calculated the capacitance of a solvate ionic liquid–electrode interfaces, where the electrode has a constant potential, and is thus inherently polarisable. Lithium ions from the lithium</div><div>glyme solvate ionic liquid are found within 0.5 nm of the electrode at all voltages studied, however, their solvation environment varies with voltage. Our study provides molecular insight into the electrode interface of solvate ionic liquids, with many features similar to pure ionic liquids. A comparison with previous studies of the same electrolyte using the fixed surface charge boundary condition is also illuminating, informing future computational studies of electrolyte–electrode interfaces.</div>


Sign in / Sign up

Export Citation Format

Share Document