scholarly journals Pyroelectric power generation from the waste heat of automotive exhaust gas

2020 ◽  
Vol 4 (3) ◽  
pp. 1143-1149 ◽  
Author(s):  
Juyoung Kim ◽  
Satoru Yamanaka ◽  
Ichiro Murayama ◽  
Takanori Katou ◽  
Tomokazu Sakamoto ◽  
...  

A waste heat recovery system is investigated basically. Original electro-thermodynamic cycle and novel system are expected to be viable in any heat sources with time dependent temperature changes instead of the spatial temperature gradient.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 706 ◽  
Author(s):  
Jiayou Liu ◽  
Fengzhong Sun

Controlling the exhaust gas temperature (EGT) of coal–fired boilers at a reasonable value is beneficial to ensuring unit efficiency and preventing acid corrosion and fouling of tail heating surfaces in power plants. To obtain the operation regulation of coupled high–low energy flue gas waste heat recovery system (CWHRS) under a given EGT, experimental equipment was designed and built. Experiments were carried out to maintain the exhaust gas temperature under different flue gas flow, flue gas temperature and air temperature conditions. As the flue gas flows, the flue gas temperatures and air temperatures increased, and the bypass flue gas flow proportions or the water flows of the additional economizer were increased to maintain the EGT at about 85 °C. An improved low temperature economizer (LTE) and front located air heater (FAH) system were put forward. As the flow of the crossover pipe increased, the EGT and the inlet water temperature of the LTE increased. As the flow of the circulating loop increased, the EGT and the inlet water temperature of the LTE decreased. Operation regulations of LTE–FAH system under four cases were given. The operation regulations of CWHRS and LTE–FAH system can provide references for power plant operation.


Author(s):  
Yousef Jeihouni ◽  
Michael Franke ◽  
Klaus Lierz ◽  
Dean Tomazic ◽  
Peter Heuser

Locomotive engines are emitting high levels of exhaust gas emissions and substantial amount of particulates which is thought to have significant global warming potential. In the past years locomotive regulations have been implemented in the United States to control the emission in this application. Also it can be observed that engine emitted carbon dioxides (CO2) will be limited soon for all on-road engine categories to meet the Green House Gases (GHG) norms. Tier 4 standards apply to locomotives since the beginning of 2015 for newly built or remanufactured engines. NOx and particulate limits have been reduced by around 70% compared to the Tier 3 standards requiring significant advancements in engine technology and / or exhaust aftertreatment solutions. EGR technology is an option to reduce NOx emissions to Tier 4 locomotive standards indeed of its impact on engine fuel consumption as well as the emitted CO2 gas, which may be controlled either by future CO2 or fuel consumption standards. To cope with this challenge, new engine technology concepts need to be developed. A waste heat recovery system is a beneficial solution to recover the wasted energies from different heat sources in the engine. Especially the considerable amount of exergy in the exhaust gas (EGR and tailpipe), which results from its high temperature and mass flow, has significant recovery potential. By utilizing a waste heat recovery system a portion of this exergy can be converted into a usable form of power, which then will increase the effective power output of the engine system. A major challenge is to recover the wasted exhaust energy with the maximum possible system efficiency. In a Tier 4 locomotive engine, heat from the EGR system as well as the tailpipe waste heat can be recovered by using an Organic Rankine Cycle (ORC) waste heat recovery system. This paper will discuss the results of a waste heat recovery (ORC) system evaluation for locomotive applications. With the help of thermodynamic calculations the incremental power from ORC system as well as the fuel economy benefit will be evaluated and discussed. Additionally, a reasonable working fluid and the system layout, which are considered for thermodynamic calculations, will be reviewed.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


Sign in / Sign up

Export Citation Format

Share Document