scholarly journals Chiral stresses in nematic cell monolayers

Soft Matter ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 764-774 ◽  
Author(s):  
Ludwig A. Hoffmann ◽  
Koen Schakenraad ◽  
Roeland M. H. Merks ◽  
Luca Giomi

We discuss the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains.

2021 ◽  
Author(s):  
Guanming Zhang ◽  
Julia Mary Yeomans

We use a computational phase-field model together with analytical analysis to study how inter-cellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. Contractile inter-cellular interactions lead to cell elongation, nematic ordering and active turbulence, characterised by motile topological defects. Extensile interactions result in frustration, and perpendicular cell orientations become more prevalent. Furthermore, we show that contractile behaviour can change to extensile behaviour if anisotropic fluctuations in cell shape are considered.


2020 ◽  
Vol 2020 (1) ◽  
pp. 013209 ◽  
Author(s):  
Mathias Casiulis ◽  
Marco Tarzia ◽  
Leticia F Cugliandolo ◽  
Olivier Dauchot

Author(s):  
Aboutaleb Amiri ◽  
Romain Mueller ◽  
Amin Doostmohammadi

Abstract The presence and significance of active topological defects is increasingly realised in diverse biological and biomimetic systems. We introduce a continuum model of polar active matter, based on conservation laws and symmetry arguments, that recapitulates both polar and apolar (nematic) features of topological defects in active turbulence. Using numerical simulations of the continuum model, we demonstrate the emergence of both half- and full-integer topological defects in polar active matter. Interestingly, we find that crossover from active turbulence with half- to full-integer defects can emerge with the coexistence region characterized by both defect types. These results put forward a minimal, generic framework for studying topological defect patterns in active matter which is capable of explaining the emergence of half-integer defects in polar systems such as bacteria and cell monolayers, as well as predicting the emergence of coexisting defect states in active matter.


2021 ◽  
Vol 126 (2) ◽  
Author(s):  
Carles Blanch-Mercader ◽  
Pau Guillamat ◽  
Aurélien Roux ◽  
Karsten Kruse

2021 ◽  
Vol 118 (6) ◽  
pp. e2017047118
Author(s):  
Alfredo Sciortino ◽  
Andreas R. Bausch

Collective motion of active matter is ubiquitously observed, ranging from propelled colloids to flocks of bird, and often features the formation of complex structures composed of agents moving coherently. However, it remains extremely challenging to predict emergent patterns from the binary interaction between agents, especially as only a limited number of interaction regimes have been experimentally observed so far. Here, we introduce an actin gliding assay coupled to a supported lipid bilayer, whose fluidity forces the interaction between self-propelled filaments to be dominated by steric repulsion. This results in filaments stopping upon binary collisions and eventually aligning nematically. Such a binary interaction rule results at high densities in the emergence of dynamic collectively moving structures including clusters, vortices, and streams of filaments. Despite the microscopic interaction having a nematic symmetry, the emergent structures are found to be polar, with filaments collectively moving in the same direction. This is due to polar biases introduced by the stopping upon collision, both on the individual filaments scale as well as on the scale of collective structures. In this context, positive half-charged topological defects turn out to be a most efficient trapping and polarity sorting conformation.


2020 ◽  
Author(s):  
Hamid Khatee ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractThe collective motion of cell monolayers within a tissue is a fundamental biological process that occurs during tissue formation, wound healing, cancerous invasion, and viral infection. Experiments have shown that at the onset of migration, the motility is self-generated as a polarization wave starting from the leading edge of the monolayer and progressively propagates into the bulk. However, it is unclear how the propagation of this motility wave is influenced by cellular properties. Here, we investigate this using a computational model based on the Potts model coupled to the dynamics of intracellular polarization. The model captures the propagation of the polarization wave initiated at the leading edge and suggests that the cells cortex can regulate the migration modes: strongly contractile cells may depolarize the monolayer, whereas less contractile cells can form swirling movement. Cortical contractility is further found to limit the cells motility, which (i) decelerates the wave speed and the leading edge progression, and (ii) destabilises the leading edge into migration fingers. Together, our model describes how different cellular properties can contribute to the regulation of collective cell migration.


Soft Matter ◽  
2021 ◽  
Author(s):  
Kirsten D. Endresen ◽  
MinSu Kim ◽  
Matthew Pittman ◽  
Yun Chen ◽  
Francesca Serra

Using microscale topographic patterns to guide fibroblasts and epithelial cells to form topological defects in monolayers, we examine behaviors dependent on cell type as well as topological charge.


2018 ◽  
Vol 4 (9) ◽  
pp. eaar8483 ◽  
Author(s):  
Katherine Copenhagen ◽  
Gema Malet-Engra ◽  
Weimiao Yu ◽  
Giorgio Scita ◽  
Nir Gov ◽  
...  

Certain malignant cancer cells form clusters in a chemoattractant gradient, which can spontaneously show three different phases of motion: translational, rotational, and random. Guided by our experiments on the motion of two-dimensional clusters in vitro, we developed an agent-based model in which the cells form a cohesive cluster due to attractive and alignment interactions. We find that when cells at the cluster rim are more motile, all three phases of motion coexist, in agreement with our observations. Using the model, we show that the transitions between different phases are driven by competition between an ordered rim and a disordered core accompanied by the creation and annihilation of topological defects in the velocity field. The model makes specific predictions, which we verify with our experimental data. Our results suggest that heterogeneous behavior of individuals, based on local environment, can lead to novel, experimentally observed phases of collective motion.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Carles Blanch-Mercader ◽  
Pau Guillamat ◽  
Aurélien Roux ◽  
Karsten Kruse

Author(s):  
K. Chien ◽  
I.P. Shintaku ◽  
A.F. Sassoon ◽  
R.L. Van de Velde ◽  
R. Heusser

Identification of cellular phenotype by cell surface antigens in conjunction with ultrastructural analysis of cellular morphology can be a useful tool in the study of biologic processes as well as in diagnostic histopathology. In this abstract, we describe a simple pre-embedding, protein A-gold staining method which is designed for cell suspensions combining the handling convenience of slide-mounted cell monolayers and the ability to evaluate specimen staining specificity prior to EM embedding.


Sign in / Sign up

Export Citation Format

Share Document