Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents

2019 ◽  
Vol 7 (33) ◽  
pp. 19269-19279 ◽  
Author(s):  
Yi Li ◽  
Eric Wong ◽  
Alexander Volodine ◽  
Chris Van Haesendonck ◽  
Kaisong Zhang ◽  
...  

A polyamide (PA) nanofilm was successfully fabricated on the nanofibrous hydrogel support via controlled interfacial polymerization (IP) and exhibited an unprecedented solvent permeation for various organic solvents.

2021 ◽  
Author(s):  
Lorena Paseta ◽  
Carlos Echaide-Gorriz ◽  
Carlos Téllez Ariso ◽  
Joaquin Coronas

Thin film composite membranes (TFC) of polyamide (PA) prepared by interfacial polymerization (IP) between a diamine and an acyl chloride are those applied to industrial nanofiltration and reverse osmosis. Water,...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiefan Huang ◽  
Basem A. Moosa ◽  
Phuong Hoang ◽  
Jiangtao Liu ◽  
Stefan Chisca ◽  
...  

AbstractEngineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.


2017 ◽  
Vol 68 (2) ◽  
pp. 203-209
Author(s):  
Hussam Nadum Abdalraheem Al Ani ◽  
Anca Maria Cimbru ◽  
Corneliu Trisca-Rusu ◽  
Szidonia Katalin Tanczos ◽  
Adriana Cuciureanu ◽  
...  

This paper illustrates the possibility of producing iono-molecular separations using ionic colloidal ultrafiltration membrane of polysulfone synthetic solutions of cupric ions and nitro phenols through ultrafiltration assisted by polymeric nanoparticle composites based on polysulfone. In the present work, in order to reduce the operating pressure and increase the flow of water we are using the process of ultrafiltration through a polysulfone membrane in N-methylpyrrolidone 10% prepared by coagulation in isopropanol. The nanoparticles needed in colloidal ultrafiltration had been obtained through the immersion technique of precipitation of a solution of 5% PSf in N-methyl pyrrolidone containing 3% aniline in lower alcohols: methanol, ethanol, and isopropanol, followed by the oxidation of the remaining aniline in a solution of 10% hydrochloric acid and ammonium persulfate. The Nanoparticles of polysulfone (NP-PSf) and The three obtained variants of nanoparticles composites (NP-PSf-PANI) were morphologically (SEM) and (AFM), structurally and compositionally (FTIR) characterized and the results show that nanoparticles polysulfone have a much lower range than the composites. The Possibility of copper complexation by both nitrophenols, and by nanoparticle surface probably lead to the formation of more stable aggregates in the supply, which can sufficiently justify the increased retention. The Retentions of the chemical species in question use in all the tests made the same series:R NP-PSf-PANI-M] R NP-PSf-PANI-E] R NP-PSf-PANI-P] R NP-PSf


2018 ◽  
Vol 69 (7) ◽  
pp. 1603-1607
Author(s):  
Ion Spiridon Din ◽  
Anca Maria Cimbru ◽  
Abbas Abdul Kadhim Klaif Rikabi ◽  
Szidonia Katalin Tanczos ◽  
Simona Ticu (Cotorcea) ◽  
...  

The importance of removing and / or separating nitro phenols from aqueous solutions through membranes is substantiated by the multitude of recent research in the field, which broadly justifies both the economic and ecological reasons of such an approach. The present paper outlines the results of the transfer of nitro phenols through a membrane system made up of PPET impregnated polypropylene capillaries (PP) impregnated with sulfonate polyetheretherketone (SPEEK). The experiments were carried out in a PP-SPEEK capillary membrane module, with a useful size of 1 m2. Determinations made by using a 4 L / min flow rate source at a 5 mg / l nitrophenol concentration and pH 5 or pH 7, and the pH 12 receiving phase and a flow rate of 0.3 L / min, revealed that o- and p-nitrophenol were transferred much faster than m-nitrophenol (the flux is nearly double); the source phase of the system is concentrated in m-nitrophenol, and the receptor phase in o- and p-nitro phenols; the transfer data correlates with the higher water solubility of m-nitrophenol; mono nitro phenols transfer much faster than di nitrophenol, but both the mono and di nitrophenol streams decrease over time; after 4-5 hours of work, the mono nitrophenol concentration triples in the receiving phase, while the 2,4-dinitrophenol concentration doubles in the source phase.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Baturalp Yalcinkaya ◽  
Fatma Yalcinkaya ◽  
Jiri Chaloupek

The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98%) with high flux. In addition, them-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent) with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.


2020 ◽  
Vol 12 (22) ◽  
pp. 25304-25315 ◽  
Author(s):  
Chi Jiang ◽  
Liping Zhang ◽  
Peng Li ◽  
Haixiang Sun ◽  
Yingfei Hou ◽  
...  

2015 ◽  
Vol 54 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Seung-Yong Lee ◽  
Z-Hun Kim ◽  
Hwa Yeon Oh ◽  
Younghoon Choi ◽  
Hanwool Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document