Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery

2019 ◽  
Vol 7 (27) ◽  
pp. 4319-4327 ◽  
Author(s):  
Sheng-Lei Hou ◽  
Shuang-Shuang Chen ◽  
Zhang-Jun Huang ◽  
Qing-Hua Lu

A drug self-framed delivery system (DSFDS) with dual-stimuli-responsive drug release and superhigh drug loaded capacity for efficient cancer chemotherapy is proposed.

2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1279 ◽  
Author(s):  
Yanqin Xu ◽  
Liyue Xiao ◽  
Yating Chang ◽  
Yuan Cao ◽  
Changguo Chen ◽  
...  

In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer–Emmett–Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.


2018 ◽  
Vol 25 (16) ◽  
pp. 1837-1866 ◽  
Author(s):  
Qi Tang ◽  
Bing Yu ◽  
Lilong Gao ◽  
Hailin Cong ◽  
Na Song ◽  
...  

Conventional drugs used for cancer chemotherapy have severe toxic side effects and show individually varied therapeutic responses. The convergence of nanotechnology, biology, material science and pharmacy offers a perspective strategy for cancer chemotherapy. Nanoparticles loaded with anti-cancer drug have been designed to overcome the limitations associated with conventional drugs, several nanomedicines have been approved by FDA and shown good performances in clinical practice. However, the therapeutic efficacies cannot be enhanced. Taking this into account, stimuli responsive nanoparticles present the ability to enhance therapeutic efficacy and reduce side effects. In this review, we systematically summarized the recent progresses of controlled anti-cancer drug release systems based on nanoparticles with different stimuli response including pH, temperature, light, redox and others. If the achievements of the past can be extrapolated into the future, it is highly likely that responsive nanoparticles with a wide array of desirable properties can be eventually developed for safe and efficient cancer therapy.


RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39780-39792
Author(s):  
Sepideh Khoee ◽  
Amirhossein Sadeghi

This project aimed to investigate the synthesis and characteristics of stimuli-responsive nanoparticles with different morphologies.


2014 ◽  
Vol 2 (21) ◽  
pp. 3333-3339 ◽  
Author(s):  
Qi Huang ◽  
Tao Liu ◽  
Chunyan Bao ◽  
Qiuning Lin ◽  
Meixin Ma ◽  
...  

Novel photo and reduction dual-responsive PEI micelles were fabricated and applied for “AND” logic responsive drug release.


2021 ◽  
Vol 6 (44) ◽  
pp. 12295-12299
Author(s):  
Xiuyu Qi ◽  
Shanshan Li ◽  
Xue‐Zhi Song ◽  
Yishu Gong ◽  
Zhaoming Guo ◽  
...  

Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Sharma Pankaj ◽  
Tailang Mukul

The aim of present work was to prepare colon specific delivery system of Ornidazole using different ratio of shellac, zein and guar gum. From study of various literature it revealed that shellac, zein and guar gum released drug from dosage form at the pH of 6.9, 11.5, 7-9 respectively. The main problem associated with colon targeted drug delivery system is degradation of drug in the acidic environment of stomach to circumvent the present problem different combinations of shellac, zein and guar gum were employed in the formulation of colon targeted tablet. Several preformulation parameters were determined such as melting point, FTIR spectroscopy, preparation of calibration curve, determination of λmax and partition coefficient. After the preformulation studies, next steps were preparation of core tablets, evaluation of core of tablets and coating of tablets. The data obtained from preformulation study seven formulations were developed and evaluated for various parameters. Based on evaluated parameter such as weight variation, friability, dissolution study, invitro drug release etc. the F7 formulation show better results colon targeted tablets. Drug content in F7 formulation was 95% and drug release after 6 hrs was 96%. Formulation containing combination of shellac, zein and guar gum released least amount of drug in the acidic environment of stomach and released most of the drug in colon. It is evide


Sign in / Sign up

Export Citation Format

Share Document