scholarly journals Inhibitions of HMGB1 and TLR4 alleviate DINP-induced asthma in mice

2019 ◽  
Vol 8 (5) ◽  
pp. 621-629 ◽  
Author(s):  
Yun-Ho Hwang ◽  
Yongjin Lee ◽  
Man-Jeong Paik ◽  
Sung-Tae Yee

Abstract We studied the effects of high mobility group box chromosomal protein 1 (HMGB1) and toll-like receptor (TLR4) in diisonoyl phthalate (DINP)-induced asthma. Mice with DINP-induced asthma were treated with a TLR4-signaling inhibitor or anti-HMGB1 antibody, and various markers of asthma were measured 24 h later. DINP increased airway hyperresponsiveness, numbers of cells in BALF, numbers of inflammatory cells (leukocytes, lymphocytes, monocytes, eosinophils, neutrophils, basophils) in blood, mucus production, pulmonary fibrosis, Th2 type cytokine levels in BALF, and lung cell apoptosis. On the other hand, administrations of TLR4-signaling inhibitors (TAK-242) or anti-HMGB1 antibodies to a mouse model of DINP-induced asthma reduced biological markers of asthma. These results show TLR4 and HMGB1 both contribute to DINP-induced asthma, and that the inhibitions of TLR4 or HMGB1 offer potential means of treating asthma induced by phthalates like DINP.

2016 ◽  
Vol 311 (5) ◽  
pp. F915-F925 ◽  
Author(s):  
Yi Shao ◽  
Minglei Sha ◽  
Lei Chen ◽  
Deng Li ◽  
Jun Lu ◽  
...  

Percutaneous nephrolithotomy (PCNL) causes a rapid increase in renal pelvic pressure in the kidney, which induces an inflammatory response. High-mobility group box-1 (HMGB1) is known to trigger the recruitment of inflammatory cells and the release of proinflammatory cytokines following ischemia reperfusion injury in the kidney, but the contribution of HMGB1 to the inflammatory response following high-pressure renal pelvic perfusion has not been investigated. In this study, high-pressure renal pelvic perfusion was induced in anesthetized pigs to examine the effect of HMGB1 on the inflammatory response. HMGB1 levels in the kidney increased following high-pressure renal pelvic perfusion, together with elevated levels of inflammatory cytokines in the plasma and kidney and an accumulation of neutrophils and macrophages. Inhibition of HMGB1 alleviated this inflammatory response while perfusion with recombinant HMGB1 had an augmentative effect, confirming the involvement of HMGB1 in the inflammatory response to high-pressure renal pelvic perfusion. HMGB1 regulated the inflammatory response by activating Toll-like receptor 4 (TLR4) signaling. In conclusion, this study has demonstrated that HMGB1/TLR4 signaling contributes to the inflammatory response following high-pressure renal pelvic perfusion in a porcine model and has implications for the management of inflammation after PCNL.


2021 ◽  
pp. 194589242199814
Author(s):  
Soo-Hyung Lee ◽  
Jae Hoon Cho ◽  
Joo-Hoo Park ◽  
Jung-Sun Cho ◽  
Heung-Man Lee

Background Chronic rhinosinusitis is involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. High mobility group box chromosomal protein 1 (HMGB-1) is known to stimulate lung fibroblast to produce ECM in lung fibrosis. The aim of this study was to investigate whether HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblasts and to identify the signal pathway. Methods Human nasal fibroblasts were cultured. After stimulation with HMGB-1, expressions of α-smooth muscle actin (α-SMA) and fibronectin were determined by real-time PCR and western blot. Total collagen was measured by Sircol assay. To investigate signal pathway, various signal inhibitors and RAGE siRNA were used. Results HMGB-1 increased α-SMA and fibronectin in mRNA and protein levels. It also increased collagen production. RAGE siRNA inhibited HMGB-1-induced α-SMA and fibronectin, and production of collagen. Furthermore, the inhibitors of RAGE downstream molecules such as p38, JNK and AP-1 also blocked the HMGB-1-induced effects. Conclusions HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblast, which is mediated by RAGE, p38, JNK and AP-1 signal pathway. These results suggest that HMGB-1 may play an important role in tissue remodeling during chronic rhinosinusitis progression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


2015 ◽  
Vol 30 (11) ◽  
pp. 1610-1617 ◽  
Author(s):  
Kazuyuki Narimatsu ◽  
Masaaki Higashiyama ◽  
Chie Kurihara ◽  
Takeshi Takajo ◽  
Koji Maruta ◽  
...  

1990 ◽  
Vol 69 (3) ◽  
pp. 880-884 ◽  
Author(s):  
G. L. Jones ◽  
C. G. Lane ◽  
P. M. O'Byrne

Airway hyperresponsiveness after inhaled ozone in dogs may occur as a result of thromboxane release in the airway. In this study, two thromboxane receptor antagonists, L-655,240 and L-670,596, were used in doses that inhibit the response to an inhaled thromboxane mimetic, U-46619, to determine further the role of thromboxane in ozone-induced airway hyperresponsiveness. Dogs were studied on 2 days separated by 1 wk. On each day, the dogs inhaled ozone (3 ppm) for 30 min. On one randomly assigned day, 10 dogs received an infusion of L-655,240 (5 mg.kg-1.h-1) and 5 dogs received an infusion of L-670,596 (1 mg.kg-1.h-1); on the other day dogs received a control infusion. Airway responses to doubling doses of acetylcholine were measured before and after inhalation of ozone and were expressed as the concentration of acetylcholine giving a rise in resistance of 5 cmH2O.l-1.s from baseline (acetylcholine provocation concentration). The development of airway hyperresponsiveness after ozone was not inhibited by the thromboxane antagonists. The mean log difference in the acetylcholine provocative concentration before and after ozone on the L-655,240 treatment day was 0.62 +/- 0.12 (SE) and on the control day was 0.71 +/- 0.12 (P = 0.48); on the L-670,596 treatment day the mean log difference was 0.68 +/- 0.15 (SE) and on the control day it was 0.75 +/- 0.19 (P = 0.45). These results do not support an important role for thromboxane in causing ozone-induced airway hyperresponsiveness.


1979 ◽  
Vol 183 (3) ◽  
pp. 657-662 ◽  
Author(s):  
P D Cary ◽  
K V Shooter ◽  
G H Goodwin ◽  
E W Johns ◽  
J Y Olayemi ◽  
...  

The interaction of the non-histone chromosomal protein HMG (high-mobility group) 1 with histone H1 subfractions was investigated by equilibrium sedimentation and n.m.r. sectroscopy. In contrast with a previous report [Smerdon & Isenberg (1976) Biochemistry 15, 4242–4247], it was found, by using equilibrium-sedimentation analysis, that protein HMG 1 binds to all three histone H1 subfractions CTL1, CTL2, and CTL3, arguing against there being a specific interaction between protein HMG 1 and only two of the subfractions, CTL1 and CTL2. Raising the ionic strength of the solutions prevents binding of protein HMG 1 to total histone H1 and the three subfractions, suggesting that the binding in vitro is simply a non-specific ionic interaction between acidic regions of the non-histone protein and the basic regions of the histone. Protein HMG 1 binds to histone H5 also, supporting this view. The above conclusions are supported by n.m.r. studies of protein HMG 1/histone H1 subfraction mixtures. When the two proteins were mixed, there was little perturbation of the n.m.r. spectra and there was no evidence for specific interaction of protein HMG 1 with any of the subfractions. It therefore remains an open question as to whether protein HMG 1 and histone H1 are complexed together in chromatin.


2010 ◽  
Vol 37 (4) ◽  
pp. 766-775 ◽  
Author(s):  
JIE LI ◽  
HONGFU XIE ◽  
TING WEN ◽  
HONGBO LIU ◽  
WU ZHU ◽  
...  

Objective.To compare the expression of high mobility group box chromosomal protein 1 (HMGB1) and the modulating effects on its downstream cytokines in patients with systemic lupus erythematosus (SLE) and healthy controls.Methods.HMGB1 concentrations in serum from SLE patients and controls were measured by immunoblot analysis. HMGB1 messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMC) was detected by real-time reverse transcription–polymerase chain reaction. Immunofluorescence assay was employed to examine the translocation of HMGB1 in monocytes after endotoxin stimulation. Release of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) by PBMC after rHMGB1 stimulation was also measured.Results.Serum HMGB1 levels and HMGB1 mRNA expressions in PBMC were elevated in SLE patients compared with controls. A positive correlation was demonstrated between HMGB1 concentrations and SLE Disease Activity Index. There was an inverse correlation between HMGB1 levels and C4 and C3 concentrations in SLE patients. HMGB1 concentrations were higher in patients with vasculitis and myositis. Lipopolysaccharide stimulated a temporarily elevated release of HMGB1 in SLE patients compared with controls. The pattern and localization of HMGB1 staining in monocytes were similar in both groups. After stimulation with rHMGB1, TNF-α level decreased but IL-6 level increased in SLE patients compared with controls.Conclusion.Our findings suggest that increased serum levels of HMGB1 in SLE may be associated with lupus disease activity. The altered production of TNF-α and IL-6 in response to rHMGB1 stimulation may participate in the disruption of cytokine homeostasis in SLE.


2008 ◽  
Vol 108 (3) ◽  
pp. c194-c201 ◽  
Author(s):  
Fumihiko Sato ◽  
Shoichi Maruyama ◽  
Hiroki Hayashi ◽  
Izumi Sakamoto ◽  
Shingo Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document