Highly sensitive and ratiometric luminescence sensing of heparin through templated cyanostilbene assemblies

The Analyst ◽  
2021 ◽  
Author(s):  
Shubhra Kanti Bhaumik ◽  
Supratim Banerjee

Heparin templated highly emissive cluster formation of di-cationic cyanostilbenes was utilized for the fluorometric detection of the polyanion in aqueous buffer, human serum and plasma.

2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


2017 ◽  
Vol 8 (2) ◽  
pp. 675-679 ◽  
Author(s):  
Nima Aliakbarinodehi ◽  
Giovanni De Micheli ◽  
Sandro Carrara
Keyword(s):  

1987 ◽  
Vol 1 (2) ◽  
pp. 170-174 ◽  
Author(s):  
Takeyuki Kohno ◽  
Eiji Ishikawa ◽  
Satoru Sugiyama ◽  
Syuji Nakamura ◽  
Yoshimasa Kanemaru

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5286
Author(s):  
Xing Guo ◽  
Rong Liu ◽  
Hongmei Li ◽  
Jingzhe Wang ◽  
Zhongyun Yuan ◽  
...  

For the first time, a novel NiFe2O4/paper-based magnetoelastic (ME) biosensor was developed for rapid, sensitive, and portable detection of human serum albumin (HSA). Due to the uniquely magnetoelastic effect of NiFe2O4 nanoparticles and the excellent mechanical properties of the paper, the paper-based ME biosensor transforms the surface stress signal induced by the specific binding of HSA and antibody modified on the paper into the electromagnetic signal. The accumulated binding complex generates a compressive stress on the biosensor surface, resulting in a decrease in the biosensor’s static magnetic permeability, which correlates to the HSA concentrations. To improve the sensitivity of the biosensor, the concentration of NiFe2O4 nanofluid and the impregnated numbers of the NiFe2O4 nanofluid-impregnated papers were optimized. The experimental results demonstrated that the biosensor exhibited a linear response to HSA concentrations ranging from 10 μg∙mL−1 to 200 μg∙mL−1, with a detection limit of 0.43 μg∙mL−1, which is significantly lower than the minimal diagnosis limit of microalbuminuria. The NiFe2O4/paper-based ME biosensor is easy to fabricate, and allows the rapid, highly-sensitive, and selective detection of HSA, providing a valuable analytical device for early monitoring and clinical diagnosis of microalbuminuria and nephropathy. This study shows the successful integration of the paper-based biosensor and the ME sensing analytical method will be a highly-sensitive, easy-to-use, disposable, and portable alternative for point-of-care monitoring.


Sign in / Sign up

Export Citation Format

Share Document