scholarly journals Filter paper based SERS substrate for the direct detection of analytes in complex matrices

The Analyst ◽  
2021 ◽  
Author(s):  
Harmke Susanna Siebe ◽  
Qinglu Chen ◽  
Xinyuan Li ◽  
Yikai Xu ◽  
Wesley Browne ◽  
...  

Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical technique for chemical analysis, due to its combination of short measurement time, high sensitivity and molecular specificity. However, the application of SERS...

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanlin Mi ◽  
Yinzhou Yan ◽  
Mengyuan Wang ◽  
Lixue Yang ◽  
Jing He ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) has been widely investigated and employed as a powerful optical analytical technique providing fingerprint vibrational information of molecules with high sensitivity and resolution. In addition to metallic nanostructure, dielectric micro-/nano-structures with extraordinary optical manipulation properties have demonstrated capability in enhanced Raman scattering with ultralow energy losses. Here we report a facile cascaded structure composed of a large microsphere (LMS) and a small microsphere array with Ag nanoparticles as a novel hybrid SERS substrate, for the first time. The cascaded microsphere-coupled SERS substrate provides a platform to increase the molecular concentration, boost the intensity of localized excitation light, and direct the far-field emission, for giant Raman enhancement. It demonstrates the maximum enhancement factor of Raman intensity greater than 108 for the limit of detection down to 10−11 M of 4-nitrothiphenol molecules in aqueous solution. The present work inspires a novel strategy to fabricate cascaded dielectric/metallic micro-/nano-structures superior to traditional SERS substrates towards practical applications in cost-effective and ultrahigh-sensitive trace-detection.


2007 ◽  
Vol 61 (10) ◽  
pp. 1116-1122 ◽  
Author(s):  
Nahla A. Abu-Hatab ◽  
Joshy F. John ◽  
Jenny M. Oran ◽  
Michael J. Sepaniak

Over the past few decades, surface-enhanced Raman spectroscopy (SERS) has garnered respect as an analytical technique with significant chemical and biological applications. SERS is important for the life sciences because it can provide trace level detection, a high level of structural information, and enhanced chemical detection. However, creating and successfully implementing a sensitive, reproducible, and robust SERS active substrate continues to be a challenging task. Herein, we report a novel method for SERS that is based upon using multiplexed microfluidics (MMFs) in a polydimethylsiloxane platform to perform parallel, high throughput, and sensitive detection/identification of single or various analytes under easily manipulated conditions. A facile passive pumping method is used to deliver Ag colloids and analytes into the channels where SERS measurements are done under nondestructive flowing conditions. With this approach, SERS signal reproducibility is found to be better than 7%. Utilizing a very high numerical aperture microscope objective with a confocal-based Raman spectrometer, high sensitivity is achieved. Moreover, the long working distance of this objective coupled with an appreciable channel depth obviates normal alignment issues expected with translational multiplexing. Rapid evaluation of the effects of anion activators and the type of colloid employed on SERS performance are used to demonstrate the efficiency and applicability of the MMF approach. SERS spectra of various pesticides were also obtained. Calibration curves of crystal violet (non-resonant enhanced) and Mitoxantrone (resonant enhanced) were generated, and the major SERS bands of these analytes were observable down to concentrations in the low nM and sub-pM ranges, respectively. While conventional random morphology colloids were used in most of these studies, unique cubic nanoparticles of silver were synthesized with different sizes and studied using visible wavelength optical extinction spectrometry, scanning electron microscopy, and the MMF-SERS approach.


2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


2011 ◽  
Vol 78 (6) ◽  
pp. 1930-1935 ◽  
Author(s):  
Suzanne L. Hennigan ◽  
Jeremy D. Driskell ◽  
Naola Ferguson-Noel ◽  
Richard A. Dluhy ◽  
Yiping Zhao ◽  
...  

ABSTRACTMycoplasma gallisepticumis a bacterial pathogen of poultry that is estimated to cause annual losses exceeding $780 million. The National Poultry Improvement Plan guidelines recommend regular surveillance and intervention strategies to containM. gallisepticuminfections and ensure mycoplasma-free avian stocks, but several factors make detection ofM. gallisepticumand diagnosis ofM. gallisepticuminfection a major challenge. Current techniques are laborious, require special expertise, and are typically plagued by false results. In this study, we describe a novel detection strategy which uses silver nanorod array–surface-enhanced Raman spectroscopy (NA-SERS) for direct detection of avian mycoplasmas. As a proof of concept for use in avian diagnostics, we used NA-SERS to detect and differentiate multiple strains of avian mycoplasma species, includingAcholeplasma laidlawii,Mycoplasma gallinarum,Mycoplasma gallinaceum,Mycoplasma synoviae, andM. gallisepticum, including vaccine strains 6/85, F, and ts-11. Chemometric multivariate analysis of spectral data was used to classify these species rapidly and accurately, with >93% sensitivity and specificity. Furthermore, NA-SERS had a lower limit of detection that was 100-fold greater than that of standard PCR and comparable to that of real-time quantitative PCR. Detection ofM. gallisepticumin choanal cleft swabs from experimentally infected birds yielded good sensitivity and specificity, suggesting that NA-SERS is applicable for clinical detection.


2019 ◽  
Vol 74 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Awatef Ouhibi ◽  
Maroua Saadaoui ◽  
Nathalie Lorrain ◽  
Mohammed Guendouz ◽  
Noureddine Raouafi ◽  
...  

In this work, we combined a hierarchical nano-array effect of silicon nanowires (SiNWs) with a metallic surface of silver nanoparticles (AgNPs) to design a surface-enhanced Raman spectroscopy (SERS) scattering substrate for sensitive detection of Rhodamine 6G (R6G) which is a typical dye for fluorescence probes. The SiNWs were prepared by Metal-Assisted Chemical Etching (MACE) of n-Si (100) wafers. The Doehlert design methodology was used for planning the experiment and analyzing the experimental results. Thanks to this methodology, the R6G SERS response has been optimized by studying the effects of the silver nitrate concentration, silver nitrate and R6G immersion times and their interactions. The immersion time in R6G solution stands out as the most of influential factor on the SERS response.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Chen ◽  
Ting-Hui Xiao ◽  
Zhenyi Luo ◽  
Yasutaka Kitahama ◽  
Kotaro Hiramatsu ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for vibrational spectroscopy as it provides several orders of magnitude higher sensitivity than inherently weak spontaneous Raman scattering by exciting localized surface plasmon resonance (LSPR) on metal substrates. However, SERS can be unreliable for biomedical use since it sacrifices reproducibility, uniformity, biocompatibility, and durability due to its strong dependence on “hot spots”, large photothermal heat generation, and easy oxidization. Here, we demonstrate the design, fabrication, and use of a metal-free (i.e., LSPR-free), topologically tailored nanostructure composed of porous carbon nanowires in an array as a SERS substrate to overcome all these problems. Specifically, it offers not only high signal enhancement (~106) due to its strong broadband charge-transfer resonance, but also extraordinarily high reproducibility due to the absence of hot spots, high durability due to no oxidization, and high compatibility to biomolecules due to its fluorescence quenching capability.


The Analyst ◽  
2020 ◽  
Vol 145 (19) ◽  
pp. 6334-6341 ◽  
Author(s):  
Vered Heleg-Shabtai ◽  
Hagai Sharabi ◽  
Amalia Zaltsman ◽  
Izhar Ron ◽  
Alexander Pevzner

A sensitive surface-enhanced Raman spectroscopy (SERS) substrate was developed to enable hand-held Raman spectrometers to detect gas-phase VX and HD.


2019 ◽  
Vol 10 ◽  
pp. 1048-1055 ◽  
Author(s):  
Malwina Liszewska ◽  
Bogusław Budner ◽  
Małgorzata Norek ◽  
Bartłomiej J Jankiewicz ◽  
Piotr Nyga

Surface-enhanced Raman spectroscopy (SERS) is a very promising analytical technique for the detection and identification of trace amounts of analytes. Among the many substrates used in SERS of great interest are nanostructures fabricated using physical methods, such as semicontinuous metal films obtained via electron beam physical vapor deposition. In these studies, we investigate the influence of morphology of semicontinuous silver films on their SERS properties. The morphologies studied ranged from isolated particles through percolated films to almost continuous films. We found that films below the percolation threshold (transition from dielectric-like to metal-like) made of isolated silver structures provided the largest SERS enhancement of 4-aminothiophenol (4-ATP) analyte signals. The substrate closest to the percolation threshold has the SERS signal about four times lower than the highest signal sample.


Sign in / Sign up

Export Citation Format

Share Document