A suspect screening analysis for contaminants of emerging concern in municipal wastewater and surface water using liquid–liquid extraction and stir bar sorptive extraction

2020 ◽  
Vol 12 (36) ◽  
pp. 4487-4495
Author(s):  
Kyra A. Murrell ◽  
Frank L. Dorman

The presence of contaminants of emerging concern (CECs) in wastewater effluent and surface waters is an important field of research for analytical scientists.

2015 ◽  
Vol 51 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Priscila Freitas-Lima ◽  
Flavia Isaura Santi Ferreira ◽  
Carlo Bertucci ◽  
Veriano Alexandre Júnior ◽  
Sônia Aparecida Carvalho Dreossi ◽  
...  

<p>Levetiracetam (LEV), an antiepileptic drug (AED) with favorable pharmacokinetic profile, is increasingly being used in clinical practice, although information on its metabolism and disposition are still being generated. Therefore a simple, robust and fast liquid-liquid extraction (LLE) followed by high-performance liquid chromatography method is described that could be used for both pharmacokinetic and therapeutic drug monitoring (TDM) purposes. Moreover, recovery rates of LEV in plasma were compared among LLE, stir bar-sorptive extraction (SBSE), and solid-phase extraction (SPE). Solvent extraction with dichloromethane yielded a plasma residue free from usual interferences such as commonly co-prescribed AEDs, and recoveries around 90% (LLE), 60% (SPE) and 10% (SBSE). Separation was obtained using reverse phase Select B column with ultraviolet detection (235 nm). Mobile phase consisted of methanol:sodium acetate buffer 0.125 M pH 4.4 (20:80, v/v). The method was linear over a range of 2.8-220.0 µg mL<sup>-1</sup>. The intra- and inter-assay precision and accuracy were studied at three concentrations; relative standard deviation was less than 10%. The limit of quantification was 2.8 µg mL<sup>-1</sup>. This robust method was successfully applied to analyze plasma samples from patients with epilepsy and therefore might be used for pharmacokinetic and TDM purposes.</p>


2020 ◽  
Vol 18 (1) ◽  
pp. 1339-1348
Author(s):  
Mona Sargazi ◽  
Mark Bücking ◽  
Massoud Kaykhaii

AbstractStir bar sorptive extraction (SBSE) has been developed in 1999 to efficiently extract and preconcentrate volatile compounds, and many applications have been found after that. This technique conforms to the principles of green chemistry. Here, we used an autosampler with an online thermal desorption unit connected to CGC-MS to analyze pesticides. This study describes the development of a highly sensitive extraction method based on SBSE for simultaneous determination of ultra-trace amounts of four pesticides λ-cyhalothrin, α-cypermethrin, tefluthrin, and dimefluthrin in environmental water samples. This method was compared to the standard liquid–liquid extraction. In this study, a totally solventless SBSE was applied to river and tap water samples for the extraction and preconcentration of four pesticides. PDMS-coated SBSEs of 10 mm × 1 mm thickness were used for this purpose, and SBSEs were directly placed into a large-volume injector of a CGC-MS for thermal desorption of the analytes. In all extractions, deltamethrin was used as an internal standard. This method showed linearity in the range of 1.0–200.0 ng L−1 for cyhalothrin, tefluthrin, and dimefluthrin and 10.0–800 ng L−1 for cypermethrin. Preconcentration factors of 179, 7, 162, and 166 were obtained with very low limits of detection of 0.32, 3.41, 0.36m and 0.69 ng L−1 for cyhalothrin, cypermethrin, tefluthrinm and dimefluthrin, respectively. These detection limits are thousands of times lower than that of the standard method of liquid–liquid extraction. Reproducibility of the method, based on the relative standard deviation, was better than 7.5% and recoveries for spiked tap and river water samples was within the range of 87.83–114.45%. The application of PDMS-coated SBSE coupled with CGC-MS equipped with a large volume injector thermal desorption unit can be used for ultra-trace analysis of environmental water samples. Solventless SBSE offers several advantages over conventional traditional liquid–liquid extraction such as being very fast and economical and provides better extraction without requiring any solvents; so it can be considered as a green method for the analysis of pesticides.


Sign in / Sign up

Export Citation Format

Share Document