On the wetting translucency of hexagonal boron nitride

2020 ◽  
Vol 22 (15) ◽  
pp. 7710-7718 ◽  
Author(s):  
Enrique Wagemann ◽  
Yanbin Wang ◽  
Siddhartha Das ◽  
Sushanta K. Mitra

When a drop sits on an atomically thin coating supported by a hydrophilic material, it is possible that the underlying substrate influences the equilibrium contact angle. Such behavior is known as the wetting translucency effect.

2018 ◽  
Vol 45 (4-5) ◽  
pp. 454-461 ◽  
Author(s):  
Ilham Essafri ◽  
Jean-Christophe Le breton ◽  
Arnaud Saint-Jalmes ◽  
Armand Soldera ◽  
Anthony Szymczyk ◽  
...  

2018 ◽  
Vol 53 (10) ◽  
pp. 1387-1399 ◽  
Author(s):  
Thu Van Tran ◽  
Farhana Abedin ◽  
Aybala Usta ◽  
Ramazan Asmatulu

Polyurethane coatings modified with silanized graphene and/or hexagonal boron nitride as nanoadditives were synthesized, characterized, and tested for ultraviolet degradation and hydrophobicity. These coatings containing various weight percentages (wt%) of nanoadditives were prepared and investigated. The coating composition was characterized using Fourier transform infrared spectroscopy. The silanization of nanoadditives was characterized using scanning electron microscopy. The glass transition temperatures (Tg) of the nanocomposite coatings were determined using differential scanning calorimeter; it was observed that the presence of nanoadditives in the coatings impacted the Tg indicating their interference with the polyurethane chains and structures. The change in the coating thickness and water contact angle after ultraviolet light exposure was also studied. Exposure of the coatings to ultraviolet light led to a decrease in the coating thickness and hydrophobicity. With the increasing content of nanoadditives, the decrease in the coating thickness was lower and the rate of decrease of water contact angle was slow. Polyurethane coatings with 0.8 wt% silanized hexagonal boron nitride nanoparticles exhibited minimum reduction in coating thickness and the slowest rate of decrease in the water contact angle.


2019 ◽  
Author(s):  
Matěj Velický ◽  
Sheng Hu ◽  
Colin R. Woods ◽  
Peter S. Toth ◽  
Viktor Zólyomi ◽  
...  

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at microdisk electrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride barrier between a graphite electrode and redox levels in a liquid solution. This was achieved by the fabrication of microdisk electrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They show a significant departure from the Butler-Volmer behavior in a clear manifestation of the Marcus-Hush theory of electron transfer. In addition, our system provides a novel experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.


Polymers ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 206 ◽  
Author(s):  
Elisseos Verveniotis ◽  
Yuji Okawa ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Takaaki Taniguchi ◽  
...  

2021 ◽  
Vol 125 (6) ◽  
pp. 1325-1335 ◽  
Author(s):  
Cesar Jara ◽  
Tomáš Rauch ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Ariel Norambuena ◽  
...  

ACS Photonics ◽  
2021 ◽  
Author(s):  
Prince Khatri ◽  
Ralph Nicholas Edward Malein ◽  
Andrew J. Ramsay ◽  
Isaac J. Luxmoore

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Sign in / Sign up

Export Citation Format

Share Document