Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease

2020 ◽  
Vol 22 (43) ◽  
pp. 25335-25343
Author(s):  
Tien Huynh ◽  
Haoran Wang ◽  
Binquan Luan

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments.

Author(s):  
Luigi Leonardo Palese

In 2019, an outbreak occurred which resulted in a global pandemic. The causative agent of this serious global health threat was a coronavirus similar to the agent of SARS, referred to as SARS-CoV-2. In this work an analysis of the available structures of the SARS-CoV-2 main protease has been performed. From a data set of crystallographic structures the dynamics of the protease has been obtained. Furthermore, a comparative analysis of the structures of SARS-CoV-2 with those of the main protease of the coronavirus responsible of SARS (SARS-CoV) was carried out. The results of these studies suggest that, although main proteases of SARS-CoV and SARS-CoV-2 are similar at the backbone level, some plasticity at the substrate binding site can be observed. The consequences of these structural aspects on the search for effective inhibitors of these enzymes are discussed, with a focus on already known compounds. The results obtained show that compounds containing an oxirane ring could be considered as inhibitors of the main protease of SARS-CoV-2.


2020 ◽  
Author(s):  
Mahmudul Hasan ◽  
Md Sorwer Alam Parvez ◽  
Kazi Faizul Azim ◽  
Abdus Shukur Imran ◽  
Topu Raihan ◽  
...  

<div>The world is facing an unprecedented global pandemic caused by the novel SARS-CoV-2. In the absence</div><div>of a specific therapeutic agent to treat COVID-19 patients, the present study aimed to virtually screen out</div><div>the effective drug candidates from the approved main protease protein (MPP) inhibitors and their</div><div>derivatives for the treatment of SARS-CoV-2. Here, drug repurposing and molecular docking were</div><div>employed to screen approved MPP inhibitors and their derivatives. The approved MPP inhibitors against</div><div>HIV and HCV were prioritized, whilst hydroxychloroquine, favipiravir, remdesivir, and alpha-ketoamide</div><div>were studied as control. The target drug surface hotspot was also investigated through the molecular</div><div>docking technique. ADME analysis was conducted to understand the pharmacokinetics and drug-likeness</div><div>of the screened MPP inhibitors. The result of this study revealed that Paritaprevir (-10.9 kcal/mol), and its</div><div>analog (CID 131982844)(-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitor</div><div>compared in this study including favipiravir, remdesivir, and alpha-ketoamide. A comparative study among</div><div>the screened putative MPP inhibitors revealed that amino acids T25, T26, H41, M49, L141, N142, G143,</div><div>C145, H164, M165, E166, D187, R188, and Q189 are at critical positions for becoming the surface hotspot</div><div>in the MPP of SARS-CoV-2. The study also suggested that paritaprevir and its' analog (CID 131982844),</div><div>may be effective against SARS-CoV-2 as these molecules had the common drug-surface hotspots on the</div><div>main protease protein of SARS-CoV-2. Other pharmacokinetic parameters also indicate that paritaprevir</div><div>and its top analog (CID 131982844) will be either similar or better-repurposed drugs than already approved</div><div>MPP inhibitors. </div><div><br></div>


2020 ◽  
Author(s):  
abdirahman elmi ◽  
S. al jawad sayem ◽  
Mohamed Ahmed ◽  
fatouma mohamed

The new coronavirus type SARS-Cov 2 (severe acute respiratory syndrome), which appeared in autumn 2019 in China, became a global pandemic in a few months. In this work, we looked for the potential anti SARS-Cov 2 of the compounds isolated from three Djiboutian medicinal plants namely Acacia seyal, Cymbopogon commutatus, and Indigofera caerulea. For this we carried out a docking with nine biomolecules, β-Sitosterol , Quercetin, Catechin, Lupeol, Rutin, Kaempferol, Gallic acid, Piperitone and Limonene on three target sites which are SARS-CoV-2 main protease (Mp), SARS-CoV-2 receptor binding domain (RBD) and human furin protease. These targets are chosen because of their role in the process of penetration of the virus into human cells and its multiplication. The phenolic compounds have a very good afinity on these three target sites with binding energies of up to -9.098 kcal/mol for rutin on SARS-CoV-2 Mp, much better than the two reference drugs hydroxychloroquine (-5.816 kcal / mol) and remdesivir (-7.194 kcal/mol). These natural compounds do not present toxicities and can be used pending In vitro and In vivo evaluations.


2021 ◽  
Author(s):  
Dafydd R Owen ◽  
Charlotte M N Allerton ◽  
Annaliesa S Anderson ◽  
Lisa Aschenbrenner ◽  
Melissa Avery ◽  
...  

The worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants. Clinical Trial Registration ID #: NCT04756531


Author(s):  
Sohini Chakraborti ◽  
Sneha Bheemireddy ◽  
Narayanaswamy Srinivasan

<p></p><p>The ongoing global pandemic of COVID-19 has brought life to almost stand still with implementations of lockdown and social distancing as some of the preventive measures in the absence of any approved specific therapeutic interventions. To combat this crisis, research community world-wide are falling back on the existing repertoire of approved/investigational drugs to probe into their anti-coronavirus properties. In this report, we have described our unique efforts in identifying potential drugs that could be repurposed against main protease of SARS-CoV-2 (SARS-CoV-2 M<sup>pro</sup>). To achieve this goal, we have primarily exploited the principles of ‘neighbourhood behaviour’ in protein 3-D (workflow-I) and chemical 2-D structural space (workflow-II) coupled with docking simulations and insights into the possible mode of actions of the selected candidates from available literature. Such an integrative approach culminated in prioritizing 29 potential repurpose-able agents (20 approved drugs and 9 investigational molecules) against SARS-CoV-2 M<sup>pro</sup>. Apart from the approved/investigational anti-viral drugs, other notable hits include anti-bacterial, anti-inflammatory, anti-cancer and anti-coagulant drugs. Our analysis suggests that some of these drugs have the potential to simultaneously modulate the functions of viral proteins and host response system. Interestingly, many of these identified candidates (12 molecules from workflow-I and several molecules belonging to the chemical classes of alkaloids, tetracyclines, peptidomimetics from workflow-II) are suggested to possess anti-viral properties which are supported by laboratory and clinical data. Further, this work opens a new avenue of research to probe into the molecular mechanism of action of many drugs which are known to demonstrate anti-viral activity but are so far not known to target viral proteases. <b>Our findings should only be used for research purposes and we strongly urge that no individual should interpret these findings for any self-diagnosis or self-medication without the prior approval from competent international health/medical regulatory agencies.</b></p><p></p>


2020 ◽  
Author(s):  
Tien Huynh ◽  
Haoran Wang ◽  
Wendy Cornell ◽  
Binquan Luan

<div>Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines haveb been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the virus have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here,we explore the underlying molecular mechanisms of the computationally determined top candidate–rutin, a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target–Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro’ pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed a more hydrophobic analog which satisfies the rule of five for western medicines and demonstrated that it possesses a much stronger binding affinity to the SARS-COV-2’s Mpro.<br></div>


2020 ◽  
Author(s):  
Oluwafemi Adeleke Ojo ◽  
Adebola Busola Ojo ◽  
Odunayo Anthonia Taiwo ◽  
Olarewaju M Oluba

Abstract SARS-CoV-2 a single stranded RNA virus which triggered the global pandemic Coronavirus Disease- 2019 (COVID-2019). It has infected about 2,844,712 patients and brought forth mortality rate to about 201,315 among 216 countries as cited by WHO. Drugs including Chloroquine and Hydroxychloroquine derivatives are being administered in most urgent cases; although, with probable side effects to people with metabolic disorders. Thus, unavailability of authorized drugs and treatment for this pandemic demands the research world to discover natural compounds with potency to cure it. This paper assesses the isoflavonoid puerarin from Pueraria lobata as a possible inhibitor of the main protease of SARS-COV-2 (Mpro) via in silico approach, for example molecular docking, Lipinski’s rule of five and toxicity prediction (ADME). Puerarin revealed high binding affinity with the target site of SARS-CoV-2 main protease. This compound slightly meets the criteria of Lipinski’s rule and does not possess properties that could cause adverse effects in humans thus, making puerarin a potential drug candidate to investigate for its usage against COVID-19.


Author(s):  
ABDIRAHMAN ELMI ◽  
S. AL-JAWAD SAYEM ◽  
MOHAMED AHMED ◽  
FATOUMA ABDOUL-LATIF

Objective: The new coronavirus type SARS-Cov 2 (severe acute respiratory syndrome), which appeared in autumn 2019 in China, became a global pandemic in a few months. In this work, we looked for the potential anti SARS-Cov 2 of the compounds isolated from three Djiboutian medicinal plants, namely Acacia seyal, Cymbopogon commutatus, and Indigofera caerulea. Methods: We carried out a molecular docking with nine biomolecules, β-Sitosterol, Quercetin, Catechin, Lupeol, Rutin, Kaempferol, Gallic acid, Piperitone and Limonene on three target sites which are SARS-CoV-2 main protease (Mp), SARS-CoV-2 receptor-binding domain (RBD) and human furin protease. These targets are chosen because of their role in the process of penetration of the virus into human cells and its multiplication. Moreover, the predictions of pharmacokinetic parameters as well as toxicological properties have been determined using an online bioinformatics tool named SwissADME and AdmetSAR respectively. Results: The phenolic compounds have a very good affinity on these three target sites with binding energies of up to-9.098 kcal/mol for rutin on SARS-CoV-2 Mp, much better than the two reference drugs hydroxychloroquine (-5.816 kcal/mol) and remdesivir (-7.194 kcal/mol). Except for β-Sitosterol, the tested biomolecules have weak toxicity. Conclusion: These natural compounds can be used against covid 19 pending In vitro and In vivo evaluations.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1409
Author(s):  
Anna Maria Sardanelli ◽  
Camilla Isgrò ◽  
Luigi Leonardo Palese

In late 2019, a global pandemic occurred. The causative agent was identified as a member of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we present an analysis on the substances identified in the human metabolome capable of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the human metabolome have both endogenous and exogenous origins. The aim of this research was to find molecules whose biochemical and toxicological profile was known that could be the starting point for the development of antiviral therapies. Our analysis revealed numerous metabolites—including xenobiotics—that bind this protease, which are essential to the lifecycle of the virus. Among these substances, silybin, a flavolignan compound and the main active component of silymarin, is particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our results—obtained in silico and in vitro—prove that silybin and silymarin, respectively, are able to inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic strategy against COVID-19.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abd. Kakhar Umar

Abstract Background COVID19 is a global pandemic that threatens all nations. As there is no effective antiviral drug for COVID19, we examined the potency of natural ingredients against the SARS-CoV-2 main protease (PDB ID 6YNQ). Buah merah is a typical fruit from Papua, Indonesia, which is known to contain high levels of carotenoids and flavonoids. The contents have been proven to be effective as antiparasitic and anti-HIV. An in silico approach to 16 metabolites of buah merah (Pandanus conoideus Lamk) was carried out using AutoDock Vina. Furthermore, the study of the dynamics of ligand–protein interactions was carried out using CABS Flex 2.0 server to determine the test ligand and receptor complexes' stability. ADMET prediction was also carried out to study the pharmacokinetic profile of potential antiviral candidates. Result The docking results showed that 3 of the 16 buah merah metabolites were potent inhibitors against the SARS-CoV-2 main protease. The flavonoid compounds are quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose with a binding affinity of − 9.7, − 9.3, and − 8.8, respectively, with stable ligand–protein complex. ADMET study shows that the three compounds are easily dissolved, easily absorbed orally and topically, have a high unbound fraction, low toxicity, and non-irritant. Conclusion We conclude that quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose can be used and improved as potential anti-SARS-CoV-2 agents in further study.


Sign in / Sign up

Export Citation Format

Share Document