The impact of metal coordination on the assembly of bis(indolyl)methane-naphthalene-diimide amphiphiles

2020 ◽  
Vol 49 (39) ◽  
pp. 13685-13692
Author(s):  
Sinan Bayindir ◽  
Kwang Soo Lee ◽  
Nurullah Saracoglu ◽  
Jon R. Parquette

In this work, we report the impact of pH and metal coordination on the self-assembly of amphiphiles comprised of naphthalenediimide (NDI)–bis(indolyl)methane (BIM) chromophores with a charged l-lysine head group.

2016 ◽  
Vol 4 (48) ◽  
pp. 8025-8032 ◽  
Author(s):  
D. Sirisha Janni ◽  
U. Chandrasekhar Reddy ◽  
Soumya Saroj ◽  
K. M. Muraleedharan

The self-assembly of non-ionic amphiphiles with hydroxylated oxanorbornane head-group was controlled using amino acid units as spacers between hydrophilic and lipophilic domains to get spherical supramolecular aggregates suitable for drug delivery applications.


2020 ◽  
Author(s):  
Yuyang Miao ◽  
Shibo Lv ◽  
Daoyuan Zheng ◽  
Yuhan Liu ◽  
Dapeng Liu ◽  
...  

Abstract Porphyrin-based metal coordination polymers (MCPs) have attracted numerous attention due to their great promise application in phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT). However, the detailed self-assembly process of porphyrin-based MCPs still remains poorly understood. This work provides a detailed study of the self-assembly process of MCPs constructed by Mn2+ and TCPP (TCPP: 4,4′,4′′,4′′′-(Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid)) in aqueous solution. Unlike traditional nucleation and growth mechanism, we discover that there is a metastable metal-organic intermediate which is kinetically favored in the self-assembly process. And the metastable metal-organic intermediate nanotape structures could convert into thermodynamically favored nanosheets through disassembling into monomers followed by reassembling process. Moreover, the two structurally different assemblies exhibit distinct photophysical performances. The intermediate Mn-TCPP aggregates show good light-induced singlet oxygen 1O2 generation for PDT while the thermodynamic favored stable Mn-TCPP aggregates exhibit good photothermal conversion ability as photothermal agents (PTAs). This study could facilitate controlling self-assembly pathway to fabricate complex MCPs with desirable applications.


2020 ◽  
Vol 98 (7) ◽  
pp. 379-385
Author(s):  
Carson O. Zellman ◽  
Danielle Vu ◽  
Vance E. Williams

Although the impact of individual functional groups on the self-assembly of columnar liquid crystal phases has been widely studied, the effect of varying multiple substituents has received much less attention. Herein, we report a series of dibenzo[a,c]phenazines containing an alcohol or ether adjacent to an electron-withdrawing ester or acid. With one exception, these difunctional mesogens form columnar phases. The phase behavior appeared to be dominated by the electron-withdrawing substituent; transition temperatures were similar to derivatives with these groups in isolation. In most instances, the addition of an electron-donating group ortho to an ester or acid suppressed the melting temperature and elevated the clearing temperature, leading to broader liquid crystal thermal ranges. This effect was more pronounced for derivatives functionalized with longer chain hexyloxy groups. These results suggest a potential strategy for controlling the phase ranges of columnar liquid crystals and achieving room temperature mesophases.


2019 ◽  
Vol 10 (3) ◽  
pp. 752-760 ◽  
Author(s):  
Kalathil K. Kartha ◽  
Naveen Kumar Allampally ◽  
Antiope T. Politi ◽  
Deepak D. Prabhu ◽  
Hayato Ouchi ◽  
...  

We unravel the impact of metal coordination and light irradiation on hierarchical self-assembly processes by combined theoretical and experimental results.


2012 ◽  
Vol 1464 ◽  
Author(s):  
Meenakshi Dutt ◽  
Olga Kuksenok ◽  
Anna C. Balazs

ABSTRACTVia the Dissipative Particle Dynamics (DPD) approach, we study the self-assembly of hybrid structures comprising lipids and end-functionalized nanotubes. Individual lipids are composed of a hydrophilic head group and two hydrophobic tails. Each bare nanotube encompasses an ABA architecture, with a hydrophobic shaft (B) and two hydrophilic ends (A). To allow for regulated transport through the nanotube, we also introduce hydrophilic hairs at one end of the tube. The amphiphilic lipids are composed of a hydrophilic head group (A) and two hydrophobic tails (B). We select the dimensions of the nanotube architecture to minimize its hydrophobic mismatch with the lipid bilayer. We find the amphiphilic lipids and functionalized nanotubes to self-assemble into a stable hybrid vesicle or a bicelle in the presence of a hydrophilic solvent. We demonstrate that the morphology of the self-assembled functionalized nanotube-lipid hybrid structures is controlled by the rigidity of the lipid molecules and concentration of the nanotubes.


CrystEngComm ◽  
2011 ◽  
Vol 13 (16) ◽  
pp. 5133 ◽  
Author(s):  
Dawei Yan ◽  
Jie Fu ◽  
Lei Zheng ◽  
Zhibin Zhang ◽  
Yan Xu ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 596
Author(s):  
Nguyen Truong Co ◽  
Mai Suan Li

The self-assembly of amyloidogenic peptides and proteins into fibrillar structures has been intensively studied for several decades, because it seems to be associated with a number of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Therefore, understanding the molecular mechanisms of this phenomenon is important for identifying an effective therapy for the corresponding diseases. Protein aggregation in living organisms very often takes place on surfaces like membranes and the impact of a surface on this process depends not only on the surface chemistry but also on its topology. Our goal was to develop a simple lattice model for studying the role of surface roughness in the aggregation kinetics of polypeptide chains and the morphology of aggregates. We showed that, consistent with the experiment, an increase in roughness slows down the fibril formation, and this process becomes inhibited at a very highly level of roughness. We predicted a subtle catalytic effect that a slightly rough surface promotes the self-assembly of polypeptide chains but does not delay it. This effect occurs when the interaction between the surface and polypeptide chains is moderate and can be explained by taking into account the competition between energy and entropy factors.


2019 ◽  
Author(s):  
Zhou Xiao ◽  
Yang Wang ◽  
Jie zhang ◽  
Zhiyuan Hu

Compared with other self-assembling molecule, peptide, especially unprotected peptide have better biocompatibility and are more acceptable for food science, cosmetics and biopharmaceuticals. However, the regulation of the microstructure formed by peptide self-assembled supramolecular remains a major problem. Herein we have designed three amphiphilic supramolecular thCompared with other self-assembling molecule, peptide, especially unprotected peptide have better biocompatibility and are more acceptable for food science, cosmetics and biopharmaceuticals. However, the regulation of the microstructure formed by peptide self-assembled supramolecular remains a major problem. Herein we have designed three amphiphilic supramolecular that can self-assemble to form specific structures. The amphiphilic supramolecular use 1,4,5,8-naphthalenetetracarboxylic anhydride as the self-assembling framework to form some specific nanostructure by the regulation of the tripeptide molecule attached to both ends of the naphthalene diimide molecules. As designed, we have observed nanostructures such as spheres, squares, and needles formed under acidic or basic condition by electron microscopy images. And we attached the molecule to the carbon six-membered ring structure of carbon nanotubes and graphene, which provides a method for improving the dispersibility of carbon nanotubes and graphene. The peptide-based molecular designs enforce intimate π-π communication and hydrogen bonding within the aggregates after self-assembly, making these nanostructures attractive for optical or electronic applications in biological environments.at can self-assemble to form specific structures. The amphiphilic supramolecular use 1,4,5,8-naphthalenetetracarboxylic anhydride as the self-assembling framework to form some specific nanostructure by the regulation of the tripeptide molecule attached to both ends of the naphthalene diimide molecules. As designed, we have observed nanostructures such as spheres, squares, and needles formed under acidic or basic condition by electron microscopy images. And we attached the molecule to the carbon six-membered ring structure of carbon nanotubes and graphene, which provides a method for improving the dispersibility of carbon nanotubes and graphene. The peptide-based molecular designs enforce intimate π-π communication and hydrogen bonding within the aggregates after self-assembly, making these nanostructures attractive for optical or electronic applications in biological environments.


Sign in / Sign up

Export Citation Format

Share Document