Visible-light-mediated semi-heterogeneous black TiO2/nickel dual catalytic C (sp2)–P bond formation toward aryl phosphonates

2020 ◽  
Vol 49 (47) ◽  
pp. 17147-17151
Author(s):  
Mehdi Koohgard ◽  
Haniehsadat Karimitabar ◽  
Mona Hosseini-Sarvari

The combination of black TiO2 nanoparticles (NPs) with a nickel catalyst provides a low-cost, sustainable, and reusable alternative photoredox/nickel system to a homogeneous counterpart (noble metals) in C(sp2)−P coupling reaction.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Dong ◽  
Yanjuan Sun ◽  
Min Fu

V2O5cluster-modified N-doped TiO2(N-TiO2/V2O5) nanocomposites photocatalyst was prepared by a facile impregnation-calcination method. The effects of V2O5cluster loading content on visible light photocatalytic activity of the as-prepared samples were investigated for degradation of toluene in air. The results showed that the visible light activity of N-doped TiO2was significantly enhanced by loading V2O5clusters. The optimal V2O5loading content was found to be 0.5 wt.%, reaching a removal ratio of 52.4% and a rate constant of 0.027 min−1, far exceeding that of unmodified N-doped TiO2. The enhanced activity is due to the deposition of V2O5clusters on the surface of N-doped TiO2. The conduction band (CB) potential of V2O5(0.48 eV) is lower than the CB level of N-doped TiO2(−0.19 V), which favors the photogenerated electron transfer from CB of N-doped TiO2to V2O5clusters. This function of V2O5clusters helps promote the transfer and separation of photogenerated electrons and holes. The present work not only displays a feasible route for the utilization of low cost V2O5clusters as a substitute for noble metals in enhancing the photocatalysis but also demonstrates a facile method for preparation of highly active composite photocatalyst for large-scale applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 686 ◽  
Author(s):  
Marta Stucchi ◽  
Daria Boffito ◽  
Eleonora Pargoletti ◽  
Giuseppina Cerrato ◽  
Claudia Bianchi ◽  
...  

TiO2-based photocatalysis under visible light is an attractive way to abate air pollutants. Moreover, developing photocatalytic materials on a large-scale requires safe and low-cost precursors. Both high-performance TiO2 nanopowders and visible-light active noble metals do not match these requirements. Here, we report the design of novel Mn-decorated micrometric TiO2 particles. Pigmentary TiO2 replaced unsafe nano-TiO2 and firmly supported MnOx particles. Mn replaced noble metals such as Au or Ag, opening the way for the development of lower cost catalysts. Varying Mn loading or pH during the impregnation affected the final activity, thus giving important information to optimize the synthesis. Photocatalytic activity screening occurred on the gas-phase degradation of ethanol as a reference molecule, both under ultraviolet (UV) (6 h) and Light Emitting Diode (LED) (24 h) irradiation. Mn-doped TiO2 reached a maximum ethanol degradation of 35% under visible light after 24 h for the sample containing 20% of Mn. Also, we found that an acidic pH increased both ethanol degradation and mineralization to CO2, while an alkaline pH drastically slowed down the reaction. A strict correlation between photocatalytic results and physico-chemical characterizations of the synthesized powders were drawn.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2017 ◽  
Vol 3 (4) ◽  
pp. 279-317 ◽  
Author(s):  
Nirmalya Mukherjee ◽  
Pintu Maity ◽  
Tubai Ghosh ◽  
Subir Panja ◽  
Brindaban C. Ranu

Author(s):  
Yanwen Wang ◽  
Rong Liang ◽  
Chao Qin ◽  
Lei Ren ◽  
Zhizhen Ye ◽  
...  

Antimony sulfide (Sb2S3) is a light absorbing material with strong visible light response, which is suitable for efficient and low-cost photoelectrodes. Nano-structured films have unique advantages in constructing photoelectrodes due...


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Sign in / Sign up

Export Citation Format

Share Document