scholarly journals Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.

In a discussion of low temperature phenomena it may be assumed that we are dealing chiefly with the properties of materials at temperatures that can be reached by the use of liquid helium. Until 1923 liquid helium had been United States of America, in Canada, in England, in Germany, and in the Soviet Union as well as in Holland. New Methods of Liquefying Helium Since 1932 two notable advances have been made in the design of apparatus for the production of liquid helium. The equipment developed by Simon and Mendelssohn and installed in the Clarendon Laboratory at Oxford represents one of them. Liquid helium is produced at a low cost, but in very small amounts, by a discontinuous process in which the cooling is produced by the adiabatic by Simon and his associates, by the desorption of helium gas from charcoal.


2021 ◽  
Vol 13 (3) ◽  
pp. 4393-4401
Author(s):  
Bishnu P. Thapaliya ◽  
Huimin Luo ◽  
Phillip Halstenberg ◽  
Harry M. Meyer ◽  
John R. Dunlap ◽  
...  

2020 ◽  
Vol 13 (05) ◽  
pp. 2051019
Author(s):  
Chunxia Zhao ◽  
Feng Li ◽  
Yunxia Yang ◽  
Renata Lippi ◽  
Hang Li ◽  
...  

Developing advanced catalysts with high activity and low cost is a hot topic for CO2 methanation at low temperatures. Co/C catalysts with well-dispersed Co nanoparticles in the channels of the ordered mesoporous carbons have been synthesized with high specific surface area and uniform pore size. Then, size control and Ru incorporation have been conducted to promote the catalytic activity. The results show that Ru–Co/C catalysts with smaller particle size ([Formula: see text][Formula: see text]nm) and mono-dispersion achieve CO2 conversion rate of 31.7% and CH4 selectivity up to 75.8%. Importantly, Ru–Co/C catalysts yield 29.9% CO2 conversion and space-time yield (CH4) of 44.5 (mmol/gcat[Formula: see text]min) even at 5 bar. It demonstrates the important prospect of structured carbon-supported metal catalysts for low-temperature and low-pressure CO2 methanation.


2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2020 ◽  
Vol 96 (3s) ◽  
pp. 392-395
Author(s):  
В.А. Бутузов ◽  
А.Е. Назаренко ◽  
Н.Ю. Дмитриев ◽  
В.А. Трофимов ◽  
В.А. Косевский ◽  
...  

Представлены результаты разработки цифрового изолятора на основе интегрального микротрансформатора в специализированном корпусе, выполненном по технологии низкотемпературной совместно обжигаемой керамики (LTCC). Согласно результатам измерений тестовых образцов максимальная скорость передачи данных разработанного цифрового изолятора - не менее 30 Мбит/с. The paper presents the results of the development of a digital insulator based on an integral microtransformer in a specialized package made in technology of low-temperature co-fired ceramics. The isolator is a microassembly consisting of a transceiver chip and an integrated transformer. According to the test results, the maximum data rate speed of the developed digital insulator is not less than 30 Mbit/s.


2019 ◽  
Vol 10 (32) ◽  
pp. 7484-7495 ◽  
Author(s):  
Huadong Yuan ◽  
Tiefeng Liu ◽  
Yujing Liu ◽  
Jianwei Nai ◽  
Yao Wang ◽  
...  

This review summarizes recent progress of biomass-derived materials in Li–S batteries. These materials are promising due to their advantages including strong physical and chemical adsorption, high abundance, low cost, and environmental friendliness.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Author(s):  
Gabriella Garbarino ◽  
Paweł Kowalik ◽  
Paola Riani ◽  
Katarzyna Antoniak-Jurak ◽  
Piotr Pieta ◽  
...  

Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Sign in / Sign up

Export Citation Format

Share Document