scholarly journals In Situ Polymerization Process: An Essential Design Tool for Lithium Polymer Batteries

Author(s):  
Vidyanand Vijayakumar ◽  
Bihag Anothumakkool ◽  
Sreekumar Kurungot ◽  
Martin Winter ◽  
Jijeesh Ravi Nair

Polymer electrolytes (PEs), a type of solid-state electrolytes (SSEs), are in contention for nearly half a century to replace organic liquid electrolytes (LEs) that are used in state-of-the-art lithium-ion batteries...

2019 ◽  
Vol 23 (10) ◽  
pp. 2785-2792 ◽  
Author(s):  
Dingsheng Shao ◽  
Xianyou Wang ◽  
Xiaolong Li ◽  
Kaili Luo ◽  
Li Yang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1707
Author(s):  
Eike T. Röchow ◽  
Matthias Coeler ◽  
Doris Pospiech ◽  
Oliver Kobsch ◽  
Elizaveta Mechtaeva ◽  
...  

Solid polymer electrolytes for bipolar lithium ion batteries requiring electrochemical stability of 4.5 V vs. Li/Li+ are presented. Thus, imidazolium-containing poly(ionic liquid) (PIL) networks were prepared by crosslinking UV-photopolymerization in an in situ approach (i.e., to allow preparation directly on the electrodes used). The crosslinks in the network improve the mechanical stability of the samples, as indicated by the free-standing nature of the materials and temperature-dependent rheology measurements. The averaged mesh size calculated from rheologoical measurements varied between 1.66 nm with 10 mol% crosslinker and 4.35 nm without crosslinker. The chemical structure of the ionic liquid (IL) monomers in the network was varied to achieve the highest possible ionic conductivity. The systematic variation in three series with a number of new IL monomers offers a direct comparison of samples obtained under comparable conditions. The ionic conductivity of generation II and III PIL networks was improved by three orders of magnitude, to the range of 7.1 × 10−6 S·cm−1 at 20 °C and 2.3 × 10−4 S·cm−1 at 80 °C, compared to known poly(vinylimidazolium·TFSI) materials (generation I). The transition from linear homopolymers to networks reduces the ionic conductivity by about one order of magnitude, but allows free-standing films instead of sticky materials. The PIL networks have a much higher voltage stability than PEO with the same amount and type of conducting salt, lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). GII-PIL networks are electrochemically stable up to a potential of 4.7 V vs. Li/Li+, which is crucial for a potential application as a solid electrolyte. Cycling (cyclovoltammetry and lithium plating-stripping) experiments revealed that it is possible to conduct lithium ions through the GII-polymer networks at low currents. We concluded that the synthesized PIL networks represent suitable candidates for solid-state electrolytes in lithium ion batteries or solid-state batteries.


2022 ◽  
pp. 193-209
Author(s):  
Yu-Chao Tseng ◽  
Ting-Yuan Lee ◽  
Yuan-Shuo Hsu ◽  
Febriana Intan ◽  
Jeng-Shiung Jan

2021 ◽  
Vol 54 (2) ◽  
pp. 874-887
Author(s):  
Liping Yu ◽  
Yong Zhang ◽  
Jirong Wang ◽  
Huihui Gan ◽  
Shaoqiao Li ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1237 ◽  
Author(s):  
Yu Jiang ◽  
Xuemin Yan ◽  
Zhaofei Ma ◽  
Ping Mei ◽  
Wei Xiao ◽  
...  

Solid polymer electrolytes (SPEs) have attracted considerable attention due to the rapid development of the need for more safety and powerful lithium ion batteries. The prime requirements of solid polymer electrolytes are high ion conductivity, low glass transition temperature, excellent solubility to the conductive lithium salt, and good interface stability against Li anode, which makes PEO and its derivatives potential candidate polymer matrixes. This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Shuo Yan ◽  
Chae-Ho Yim ◽  
Vladimir Pankov ◽  
Mackenzie Bauer ◽  
Elena Baranova ◽  
...  

Solid-state lithium metal batteries (LMBs) have become increasingly important in recent years due to their potential to offer higher energy density and enhanced safety compared to conventional liquid electrolyte-based lithium-ion batteries (LIBs). However, they require highly functional solid-state electrolytes (SSEs) and, therefore, many inorganic materials such as oxides of perovskite La2/3−xLi3xTiO3 (LLTO) and garnets La3Li7Zr2O12 (LLZO), sulfides Li10GeP2S12 (LGPS), and phosphates Li1+xAlxTi2−x(PO4)3x (LATP) are under investigation. Among these oxide materials, LLTO exhibits superior safety, wider electrochemical window (8 V vs. Li/Li+), and higher bulk conductivity values reaching in excess of 10−3 S cm−1 at ambient temperature, which is close to organic liquid-state electrolytes presently used in LIBs. However, recent studies focus primarily on composite or hybrid electrolytes that mix LLTO with organic polymeric materials. There are scarce studies of pure (100%) LLTO electrolytes in solid-state LMBs and there is a need to shed more light on this type of electrolyte and its potential for LMBs. Therefore, in our review, we first elaborated on the structure/property relationship between compositions of perovskites and their ionic conductivities. We then summarized current issues and some successful attempts for the fabrication of pure LLTO electrolytes. Their electrochemical and battery performances were also presented. We focused on tape casting as an effective method to prepare pure LLTO thin films that are compatible and can be easily integrated into existing roll-to-roll battery manufacturing processes. This review intends to shed some light on the design and manufacturing of LLTO for all-ceramic electrolytes towards safer and higher power density solid-state LMBs.


Sign in / Sign up

Export Citation Format

Share Document