Protective effects of fucoidan against ethanol-induced liver injury through maintaining mitochondria function and mitophagy balance in rats.

2021 ◽  
Author(s):  
Huichao Zhao ◽  
Shuang Liu ◽  
Hui Zhao ◽  
Meilan Xue ◽  
Huaqi Zhang ◽  
...  

For alcoholic liver disease (ALD), mitophagy was reported as a promising therapeutic strategy to alleviate the hepatic lesion elicited by ethanol. This study was to investigate the regulatory effects of...

2021 ◽  
Author(s):  
Xinling Song ◽  
Wenxue Sun ◽  
Wenxin Cai ◽  
Le Jia ◽  
Jianjun Zhang

A polysaccharide named as PFP-1 was isolated from Pleurotus geesteranus fruiting body, and the potential investigations on ameliorating oxidative stress and liver injury against alcoholic liver disease (ALD) were processed...


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321565 ◽  
Author(s):  
Laura Wrzosek ◽  
Dragos Ciocan ◽  
Cindy Hugot ◽  
Madeleine Spatz ◽  
Margot Dupeux ◽  
...  

ObjectiveChronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions.DesignWe used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice.ResultsPectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists.ConclusionsImprovement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.


2005 ◽  
Vol 288 (1) ◽  
pp. G1-G6 ◽  
Author(s):  
Anna Mae Diehl

Liver regeneration is necessary to recover from alcoholic liver injury. Herein, we review evidence that ethanol interferes with liver regeneration. Briefly, alcoholic fatty livers demonstrate increased rates of hepatocyte death. The latter provides a regenerative stimulus. However, unlike mature hepatocytes in healthy adult livers, most surviving mature hepatocytes in alcoholic fatty livers cannot replicate. Therefore, less mature cells (progenitors) must differentiate to replace dead hepatocytes. Little is known about the general mechanisms that modulate the differentiation of liver progenitors in adults. Delineation of these mechanisms and clarification of how ethanol influences them might suggest new therapies for alcoholic liver disease.


Author(s):  
Shahrbanoo Keshavarz Azizi Raftar ◽  
Fatemeh Ashrafian ◽  
Abbas Yadegar ◽  
Arezou Lari ◽  
Hamid Reza Moradi ◽  
...  

Akkermansia muciniphila , as a member of the gut microbiota, has been proposed as a next-generation probiotic. Liver fibrosis is the main determinant of liver dysfunction and mortality in patients with chronic liver disease.


Author(s):  
Xiaodan Zhong ◽  
Ping Cui ◽  
Junjun Jiang ◽  
Chuanyi Ning ◽  
Bingyu Liang ◽  
...  

BackgroundNew evidence implies that the imbalance of gut microbiota is associated with the progression of alcoholic liver disease (ALD) and that the composition of gut microbiota is altered in ALD patients. However, the predominant bacterium in patients involved in the progress of ALD has not been identified. The purpose of this study is to investigate the predominant bacterium in the early and end-stages of ALD as well as the relationship between the bacterium and the degree of liver injury.MethodsWe enrolled 21 alcoholic fatty liver (AFL) patients, 17 alcoholic liver cirrhosis (ALC) patients and 27 healthy controls, and sequenced the 16S rRNA gene of their fecal microbiota. The gut microbiota composition and its relationship with the indicators of clinical hepatic function were assessed using canonical correspondence analysis (CCA), spearman correlation heatmap and multivariate association with linear (MaAsLin) Models.ResultsThe composition and structure of gut microbiota changed greatly in different stages of ALD, and the degree of disorder was aggravated with the progression of ALD, even in the early stage. Moreover, the relative abundance of Streptococcus was highly enriched only in patients with ALC (P <0.001), and positively correlated with AST level (P = 0.029). The abundance of Streptococcus distinguished the liver injury of ALC patients from the controls with an area under the receiver-operating characteristic curve (AUC) of 0.877 (P < 0.001).ConclusionsThese findings indicate that the imbalance of gut microbiota exists at the early and end-stages of ALD, and the degree of disorder is aggravated with the progression of ALD. Streptococcus, as the predominant bacterium, may be a microbiological marker to evaluate the severity of liver injury in ALD patients.


2005 ◽  
Vol 100 ◽  
pp. S143
Author(s):  
Jonathan W. Goldstein ◽  
Theresa Chen ◽  
Rehan Khan ◽  
Jennifer Lanter ◽  
Shirish Barve ◽  
...  

2006 ◽  
Vol 30 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Kim R. Bridle ◽  
Ting-Kin Cheung ◽  
Therese L. Murphy ◽  
Margaret M. Walters ◽  
Gregory J. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document