A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Mohamed El-Tholoth ◽  
Huiwen Bai ◽  
Michael G. Mauk ◽  
Linda Saif ◽  
Haim H. Bau

The porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) are coronaviruses (CoVs) of neonatal pigs that cause great economic losses to pig farms and pork processors.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Luo ◽  
Shaohua Wang ◽  
Lin Zhu ◽  
Baochao Fan ◽  
Tong Liu ◽  
...  

Abstract Swine enteric diseases have caused significant economic loss and have been considered as the major threat to the global swine industry. Several coronaviruses, including transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV), have been identified as the causative agents of these diseases. Effective measures to control these diseases are lacking. The major host cells of transmissible gastroenteritis virus and porcine epidemic diarrhea virus have thought to be epithelial cells on small intestine villi. Aminopeptidase-N (APN) has been described as the putative receptor for entry of transmissible gastroenteritis virus and porcine epidemic diarrhea virus into cells in vitro. Recently, Whitworth et al. have reported that APN knockout pigs are resistant to TGEV but not PEDV after weaning. However, it remains unclear if APN-null neonatal pigs are protected from TGEV. Here we report the generation of APN-null pigs by using CRISPR/Cas9 technology followed by somatic cell nuclear transfer. APN-null pigs are produced with normal pregnancy rate and viability, indicating lack of APN is not embryonic lethal. After viral challenge, APN-null neonatal piglets are resistant to highly virulent transmissible gastroenteritis virus. Histopathological analyses indicate APN-null pigs exhibit normal small intestine villi, while wildtype pigs show typical lesions in small intestines. Immunochemistry analyses confirm that no transmissible gastroenteritis virus antigen is detected in target tissues in APN-null piglets. However, upon porcine epidemic diarrhea virus challenge, APN-null pigs are still susceptible with 100% mortality. Collectively, this report provides a viable tool for producing animals with enhanced resistance to TGEV and clarifies that APN is dispensable for the PEDV infection in pigs.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 682 ◽  
Author(s):  
Pascual-Iglesias ◽  
Sanchez ◽  
Penzes ◽  
Sola ◽  
Enjuanes ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.


Sign in / Sign up

Export Citation Format

Share Document