scholarly journals Asymmetric polyhedron structured NiSe2@MoSe2 device for supercapacitor

2021 ◽  
Author(s):  
M Sangeethavidhya ◽  
Rathinam Yuvakkumar ◽  
Ganesan Ravi ◽  
Saravanakumar Balasubramaniam ◽  
Dhayalan Velauthapillai

Approaching into the part of redox active sites in charge/discharge material is extremely noteworthy for the progress of high performance of the polyhedron structured NiSe2@MoSe2 (NMS hydrolysed for 18h) as...

2021 ◽  
Author(s):  
Javier Villalobos ◽  
Diego Gonzales-Flores ◽  
Roberto Urcuyo ◽  
Mavis L. Montero ◽  
Götz Schuck ◽  
...  

<p>The requirements for beneficial materials restructuring into a higher performance OER electrocatalyst are still a largely open question. Here we use Erythrite (Co<sub>3</sub>(AsO<sub>4</sub>)<sub>2 </sub>8H<sub>2</sub>O) as a Co-based OER electrocatalyst to evaluate its catalytic properties during in-situ restructuring into an amorphous Co-based catalyst in four different electrolytes at pH 7. Using diffraction, microscopy and spectroscopy, we observed a strong effect in the restructuring kinetics depending of the anions in the electrolyte. Only carbonate electrolyte could activate the catalyst electrode, which we relate to its slow restructuring kinetics. While its turnover frequency (TOF) reduced from 2.84 O<sub>2 </sub>Co<sup>-1 </sup>s<sup>-1</sup> to a constant value of 0.10 O<sub>2</sub> Co<sup>-1 </sup>s<sup>-1</sup> after ~ 300 cycles, the number of redox active sites continuously increased, which explained the current increase of around 100%. The final activated material owns an adequate local order, a high Co oxidation state and a high number of redox-active Co ions, which we identify as the trinity for enhancing the OER activity. Thus, this work provides new insights into for the rational design of high-performance OER catalysts by electrochemical restructuring.</p>


Author(s):  
Ning An ◽  
Zhen Guo ◽  
Jiao Xin ◽  
Yuan-Yuan He ◽  
Ke-Feng Xie ◽  
...  

Redox-active covalent organic frameworks (COFs) are an emerging class of energy storage materials due to their notably abundant active sites, well-defined channels and highly surface areas. However, their poor electrical...


Author(s):  
jinjin wang ◽  
Tianfeng Ye ◽  
Yanqun Shao ◽  
zhiyuan lu ◽  
yuting lin ◽  
...  

Abstract RuO2 is well known to be an active and expensive metal oxide. In the paper, ZnCo2O4/RuO2 nanocomposites had been synthesized by simple hydrothermal, impregnation and calcination methods. Due to the multifunctional bridge structure, RuO2 could not only effectively inhibit the volume change of ZnCo2O4 in long-term work but also provide more redox active sites. The forbidden bandwidth was reduced and the conductivity was improved after doping RuO2. Comparing with ZnCo2O4, the density of state of ZnCo2O4/RuO2 tended to a higher energy level. ZnCo2O4/3wt% RuO2 electrode exhibited the excellent specific capacitance (1346.56 F g−1), high rate capability and cyclic stability in 6 M KOH aqueous solution. For the first time, the electrochemical performance of ZnCo2O4/RuO2//IrO2-ZnO ASC has been evaluated in two-electrode configurations. The supercapacitor exhibited an excellent energy density of 40.89 W h kg-1 at the power density of 740 W kg-1 and a high capacitance retention of 87.5 % even after 7000 cycles at a scanning rate of 100 mV s-1. The ZnCo2O4/RuO2 was a promising electrode material for supercapacitors.


2021 ◽  
Author(s):  
Javier Villalobos ◽  
Diego Gonzales-Flores ◽  
Roberto Urcuyo ◽  
Mavis L. Montero ◽  
Götz Schuck ◽  
...  

<p>The requirements for beneficial materials restructuring into a higher performance OER electrocatalyst are still a largely open question. Here we use Erythrite (Co<sub>3</sub>(AsO<sub>4</sub>)<sub>2 </sub>8H<sub>2</sub>O) as a Co-based OER electrocatalyst to evaluate its catalytic properties during in-situ restructuring into an amorphous Co-based catalyst in four different electrolytes at pH 7. Using diffraction, microscopy and spectroscopy, we observed a strong effect in the restructuring kinetics depending of the anions in the electrolyte. Only carbonate electrolyte could activate the catalyst electrode, which we relate to its slow restructuring kinetics. While its turnover frequency (TOF) reduced from 2.84 O<sub>2 </sub>Co<sup>-1 </sup>s<sup>-1</sup> to a constant value of 0.10 O<sub>2</sub> Co<sup>-1 </sup>s<sup>-1</sup> after ~ 300 cycles, the number of redox active sites continuously increased, which explained the current increase of around 100%. The final activated material owns an adequate local order, a high Co oxidation state and a high number of redox-active Co ions, which we identify as the trinity for enhancing the OER activity. Thus, this work provides new insights into for the rational design of high-performance OER catalysts by electrochemical restructuring.</p>


2021 ◽  
Author(s):  
Javier Villalobos ◽  
Diego Gonzales-Flores ◽  
Roberto Urcuyo ◽  
Mavis L. Montero ◽  
Götz Schuck ◽  
...  

<p>The requirements for beneficial materials restructuring into a higher performance OER electrocatalyst are still a largely open question. Here we use Erythrite (Co<sub>3</sub>(AsO<sub>4</sub>)<sub>2 </sub>8H<sub>2</sub>O) as a Co-based OER electrocatalyst to evaluate its catalytic properties during in-situ restructuring into an amorphous Co-based catalyst in four different electrolytes at pH 7. Using diffraction, microscopy and spectroscopy, we observed a strong effect in the restructuring kinetics depending of the anions in the electrolyte. Only carbonate electrolyte could activate the catalyst electrode, which we relate to its slow restructuring kinetics. While its turnover frequency (TOF) reduced from 2.84 O<sub>2 </sub>Co<sup>-1 </sup>s<sup>-1</sup> to a constant value of 0.10 O<sub>2</sub> Co<sup>-1 </sup>s<sup>-1</sup> after ~ 300 cycles, the number of redox active sites continuously increased, which explained the current increase of around 100%. The final activated material owns an adequate local order, a high Co oxidation state and a high number of redox-active Co ions, which we identify as the trinity for enhancing the OER activity. Thus, this work provides new insights into for the rational design of high-performance OER catalysts by electrochemical restructuring.</p>


2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 202
Author(s):  
Yexin Dai ◽  
Jie Ding ◽  
Jingyu Li ◽  
Yang Li ◽  
Yanping Zong ◽  
...  

In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.


Sign in / Sign up

Export Citation Format

Share Document