scholarly journals Recent Progress on Sensing Application of Metal Nanoarchitectures Enhanced Fluorescence

2021 ◽  
Author(s):  
Meiling Wang

Fluorescence analytical method, as a real time and in situ analytical approach to target analytes, can offer advantages of high sensitivity/selectivity, great versatility, non-invasive measurement and easy to transmit over...

2021 ◽  
Vol 11 (4) ◽  
pp. 1391
Author(s):  
Yajun Zhang ◽  
Aoshu Xu ◽  
Xin Lv ◽  
Qian Wang ◽  
Caihui Feng ◽  
...  

The development of biofilms and the related changes in porous media in the subsurface cannot be directly observed and evaluated. The primary reason that the mechanism of biofilm clogging in porous media cannot be clearly demonstrated is due to the opacity and structural complexity of three-dimensional pore space. Interest in exploring methods to overcome this limitation has been increasing. In the first part of this review, we introduce the underlying characteristics of biofilm in porous media. Then, we summarize two approaches, non-invasive measurement methods and mathematical simulation strategies, for studying fluid–biofilm–porous medium interaction with spatiotemporal resolution. We also discuss the advantages and limitations of these approaches. Lastly, we provide a perspective on opportunities for in situ monitoring at the field site.


2021 ◽  
Author(s):  
Jianan Qu ◽  
ZHONGYA QIN ◽  
ZHENTAO SHE ◽  
CONGPING CHEN ◽  
WANJIE WU ◽  
...  

High-resolution optical imaging of deep tissue in-situ such as the living brain is fundamentally challenging because of the aberration and scattering of light. In this work, we develop an innovative adaptive optics three-photon microscope based on direct focus sensing and shaping that can accurately measure and effectively compensate for both low- and high-order specimen-induced aberrations and recover near-diffraction-limited performance at depth. A conjugate adaptive optics configuration with remote focusing enables in vivo imaging of fine neuronal structures in the mouse cortex through the intact skull up to a depth of 750 um below pia, making high-resolution microscopy in cortex near non-invasive. Functional calcium imaging with high sensitivity and accuracy, and high-precision laser-mediated microsurgery through the intact skull were demonstrated. Moreover, we also achieved in vivo high-resolution imaging of the deep cortex and subcortical hippocampus up to 1.1 mm below pia within the intact brain.


2016 ◽  
Vol 3 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Lin Xue ◽  
Dong-jie Zhao ◽  
Zi-yang Wang ◽  
Xiao-dong Wang ◽  
Cheng Wang ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Marcello Picollo ◽  
Maurizio Aceto ◽  
Tatiana Vitorino

Abstract UV-Vis reflectance spectroscopy has been widely used as a non-invasive method for the study of cultural heritage materials for several decades. In particular, FORS, introduced in the 1980s, allows to acquire hundreds of reflectance spectra in situ in a short time, contributing to the identification of artist’s materials. More recently, microspectrofluorimetry has also been proposed as a powerful non-invasive method for the identification of dyes and lake pigments that provides high sensitivity and selectivity. In this chapter, the concepts behind these spectroscopic methodologies will be discussed, as well as the instrumentation and measurement modes used. Case studies related with different cultural heritage materials (paintings and manuscripts, textiles, carpets and tapestries, glass, metals, and minerals), which show the usefulness of UV-Vis reflectance spectroscopy and microspectrofluorimetry applied to the study of artworks, will also be presented.


2021 ◽  
Author(s):  
Hongming Yi ◽  
Mathieu Cazaunau ◽  
Aline Gratien ◽  
Vincent Michoud ◽  
Edouard Pangui ◽  
...  

Abstract. We report on applications of ultraviolet light emitted diode based incoherent broadband cavity enhanced absorption spectroscopy (UV-LED-IBBCEAS) technique for optical monitoring of HONO, NO2 and CH2O in a simulation chamber. Performance intercomparison of the UV-LED-IBBCEAS with a wet chemistry-based NitroMAC sensor and a FTIR spectrometer has been carried out on real time simultaneous measurement of HONO, NO2 and CH2O concentrations during the reaction of NO2 with H2O vapor in the CESAM atmospheric simulation chamber. 1-σ (SNR = 1) detection limits of 200 pptv for NO2, 100 pptv for HONO and 5 ppbv for CH2O over 120 s were found for the UV-LED-IBBCEAS measurement. On the contrary to many set-ups where cavities are installed outside the simulation chamber, we describe here an original in-situ permanent installation. The intercomparison results demonstrate that IBBCEAS is a very well suitable technique for in situ simultaneous measurements of multiple chemically reactive species with high sensitivity and high precision even if the absorption bands of these species are overlapped. It offers excellent capacity to non-invasive optical monitoring of chemical reaction without any perturbation. For the application to simulation chamber, it has the advantage to provide a spatially integrated measurement across the reactor and hence to avoid point sampling related artefact.


2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

Author(s):  
Suraj Mathur

This prospective study was done in the Department of Radio diagnosis Govt. Medical College, Kozhikode. A total of 65 patients who were referred to our department with clinical suspicion of endometrial lesions and incidentally detected endometrial lesions on ultrasonography underwent transvaginal ultrasound and subsequent Imaging evaluation of pelvis MRI has very high sensitivity (95%) and specificity (98%) and is almost as accurate (97%) as histopathology in differentiating benign from malignant lesions. Addition of DWI with ADC mapping to conventional MRI increases its accuracy even more. However there is inherent limitation to MRI in detecting carcinoma in situ and micrometastasis. Keywords: TVS, MRI, Sensitivity, Specificity, Histopathology.


Sign in / Sign up

Export Citation Format

Share Document