Promising tamoxifen-loaded biocompatible hybrid magnetic nanoplatforms against breast cancer cells: synthesis, characterization and biological evaluation

2021 ◽  
Vol 45 (8) ◽  
pp. 4032-4045
Author(s):  
Diego Cadena Castro ◽  
Gerardo Gatti ◽  
Sandra E. Martín ◽  
Paula M. Uberman ◽  
Mónica C. García

Improved efficacy and safety of tamoxifen-loaded hybrid nanocarriers based on Fe3O4 nanoparticles, l-cysteine and hyaluronic acid for breast cancer therapy.

MedChemComm ◽  
2015 ◽  
Vol 6 (5) ◽  
pp. 778-787 ◽  
Author(s):  
Kavita Yadav ◽  
Priyanshu Bhargava ◽  
Sandhya Bansal ◽  
Manish Singh ◽  
Siddhi Gupta ◽  
...  

Anticancer drug Tamoxifen is modified to charged lithocholic acid derived amphiphile for enhanced cytotoxicity against breast cancer cells.


2021 ◽  
Vol 14 ◽  
Author(s):  
Farid Hashemi ◽  
Ali Zarrabi ◽  
Amirhossein Zabolian ◽  
Hossein Saleki ◽  
Mahdi Vasheghani Farahani ◽  
...  

Breast cancer is one of the leading causes of death worldwide. Breast cancer cells demonstrate uncontrolled proliferation, and high metastatic capacity. They can obtain resistance to chemotherapy and radiotherapy. This has resulted in troublesome problems in its treatment. Nature as a rich source of plant derived-natural products with anti-tumor activity can be of interest in breast cancer therapy. Ginsenosides are triterpenoid saponins and considered as secondary metabolites exclusively found in Panax species. From immemorial times, ginsenosides have been applied in treatment of various disorders such as diabetes, inflammatory diseases, neurological disorders, and particularly, cancer. In the present review, we highlight anti-tumor activity of ginsenosides against breast cancer cells. Ginsenosides are able to induce apoptosis and cell cycle arrest. They interfere with breast cancer metastasis via inhibiting epithelial-to-mesenchymal transition, matrix metalloproteinase proteins and angiogenesis. Ginsenosides can promote efficacy of chemotherapy via suppressing migration and proliferation. Molecular pathways such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin-like growth factor-1, Wnt, microRNAs and long non-coding RNAs are affected by ginsenosides in suppressing breast cancer malignancy. Consequently, ginsenosides are versatile compounds in breast cancer therapy by suppressing growth, and invasion, as well as promoting their sensitivity to chemotherapy.


Author(s):  
Marta Ziaja-Sołtys ◽  
Jolanta Rzymowska

AbstractThis study aimed to determine the changes in the expression of genes for selected specific transcriptional factors that have both activating and repressing functions in in vitro ductal breast cancer cells, under the influence of paclitaxel, applying the microarray technique. The cells are treated with 60 ng/ml and 300 ng/ml doses of paclitaxel that correspond to those applied in breast cancer therapy. About 60 ng/ml doses of paclitaxel cause a statistically significant increase in expression of all the 16 analysed genes coding transcriptional factors, ranging from 1.84-fold (for PO4F2) to 4.65-fold (for LMO4) (p < 0.05) in comparison with the control cells, and enhanced the taxane mechanism of action. The 300 ng/ml doses of paclitaxel cause a cytotoxic effect in the cells. In this article, we argue that these changes in gene expression values may constitute prognostic and predictive factors in ductal breast cancer therapy.


2021 ◽  
Vol 20 ◽  
pp. 153303382110363
Author(s):  
Ameneh Jafari ◽  
Mostafa Rezaei-Tavirani ◽  
Hassan Niknejad ◽  
Hakimeh Zali

Objectives: Traditional breast cancer treatments have challenges including inefficiency, multidrug resistance, severe side effects, and targeting non-specifically. The development of alternative treatment strategies has attracted a great deal of interest. Using the amniotic membrane has become a promising and convenient new approach for cancer therapy. This study aimed to evaluate the anti-cancer ability of conditioned medium extracted from the human amniotic membrane (hAM-CM) on breast cancer cells. Methods: Conditioned medium was collected after 48 h incubation of hAM in epithelial up manner. MTT, cell cycle, apoptosis, colony formation, and sphere assays were used to determine the impact of hAM-CM on breast cancer cell lines. The effects of hAM-CM on the migration and invasion of breast cancer cells were determined using scratch wound healing and transwell assays, respectively. Results: Based on the results, cell viability was significantly decreased by hAM-CM in a dose-dependent manner. The hAM-CM remarkably induced apoptosis and necrosis of cancer cells. Moreover, cell migration and invasion potential of cancer cells decreased after the hAM-CM treatment. Further, both the number of colonies and their morphologies were affected by the treatment. In the treated group, a significant decrease in the number of colonies along with an obvious change in their morphologies from holoclone shape to a dominant paracolone structure was observed. Conclusion: Our results indicate that the conditioned medium derived from the human amniotic membrane able to inhibit proliferation and metastasis of tumor cells and can be considered a natural and valuable candidate for breast cancer therapy.


2021 ◽  
Vol 14 (2) ◽  
pp. 169
Author(s):  
Gloria Ana ◽  
Patrick M. Kelly ◽  
Azizah M. Malebari ◽  
Sara Noorani ◽  
Seema M. Nathwani ◽  
...  

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.


2020 ◽  
Vol 107 ◽  
pp. 65-77 ◽  
Author(s):  
Akshay A. Narkhede ◽  
James H. Crenshaw ◽  
David K. Crossman ◽  
Lalita A. Shevde ◽  
Shreyas S. Rao

2021 ◽  
Author(s):  
Termeh Shakery ◽  
Fatemeh Safari

Breast cancer (BC) is one of the most causes of cancer-related death among women worldwide. Cancer therapy based on stem cells was considered as a novel and promising platform. In present study, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through Pinkbar (planar intestinal-and kidney-specific BAR domain protein), pAKT, and matrix metalloproteinases including MMP2, MMP9 on MDA-MB-231 breast cancer cells. To do so, we employed a co-culture system using 6 well plates transwell with a diameter of 0.4 μm pore sized. After 72h hAMSCs-treated MDA-MB-231 breast cancer cells, the expression of Epidermal growth factor receptor (EGFR), and c-Src (a key mediator in EGFR signaling pathway), Pinkbar, pAKT, MMP2, and MMP9 was analyzed by using quantitative real time PCR (qRT-PCR) and western blot methods. Based on using 2D and 3D cell culture models, the significant reduction of tumor cell growth and motility through down regulation of EGFR, c-Src, Pinkbar, pAKT, MMP2, and MMP9 in MDA-MB-231 breast cancer cells was shown. Also, the induction of cellular apoptosis also found. Our finding indicates that the hAMSCS secretome has therapeutic effects on cancer cells. To identify the details of the molecular mechanisms, more experiments will be required.


Sign in / Sign up

Export Citation Format

Share Document