Au@Ag nanoparticle sensor for sensitive and rapid detection of glucose

2021 ◽  
Vol 45 (6) ◽  
pp. 3059-3066
Author(s):  
Zhiwen Pan ◽  
Junqi Yang ◽  
Weijia Song ◽  
Puqiang Luo ◽  
Junyan Zou ◽  
...  

A sensitive SERS sensor based on Au@Ag nanoparticles for rapid glucose detection (5 min) via tuning of the plasmonic properties.

2021 ◽  
pp. 1-6
Author(s):  
Serap Yiğit Gezgin ◽  
Abdullah Kepceoğlu ◽  
Hamdi Şükür Kiliç

In this study, silver (Ag) nanoparticle thin films were deposited on microscope slide glass and Si wafer substrates using the pulsed-laser deposition (PLD) technique in Ar ambient gas pressures of 1 × 10−3 and 7.5 × 10−1 mbar. AFM analysis has shown that the number of Ag nanoparticles reaching the substrate decreased with increasing Ar gas pressure. As a result of Ar ambient gas being allowed into the vacuum chamber, it was observed that the size and height of Ag nanoparticles decreased and the interparticle distances decreased. According to the absorption spectra taken by a UV–vis spectrometer, the wavelength where the localised surface plasmon resonance (LSPR) peak appeared was shifted towards the longer wavelength region in the solar spectrum as Ar background gas pressure was decreased. This experiment shows that LSPR wavelength can be tuned by adjusting the size of metal nanoparticles, which can be controlled by changing Ar gas pressure. The obtained extinction cross section spectra for Ag nanoparticle thin film was theoretically analysed and determined by using the metal nanoparticle–boundary element method (MNPBEM) toolbox simulation program. In this study, experimental spectrum and simulation data for metal nanoparticles were acquired, compared, and determined to be in agreement.


2019 ◽  
Vol 77 (4) ◽  
pp. 379
Author(s):  
Fangtao Zuo ◽  
Wei Xu ◽  
Aiwu Zhao

2018 ◽  
Vol 775 ◽  
pp. 144-148 ◽  
Author(s):  
Bethel Faith Y. Rezaga ◽  
Mary Donnabelle L. Balela

Silver (Ag) nanoparticles synthesized in an aqueous system was sintered at room temperature using NaCl solution. The Ag nanoparticles have an average diameter of about 24 nm. After dispersing the Ag nanoparticles in 50mM NaCl solution, a significant increase in particle size to about 206 nm was observed. On the other hand, the particle size was also increased to about 175 nm when the Ag nanoparticles were printed and then 50mM NaCl solution was dropped onto the printed Ag nanoparticles. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance was reduced from 57.7 to 6.5 and 6.7 ohms for the as-prepared and sintered Ag nanoparticles using two different treatments, respectively. The sintered Ag nanoparticle ink formulation exhibit high conductivity when drawn on both cellulose acetate film and bond paper even after bending and folding of the substrates.


2020 ◽  
Vol 833 ◽  
pp. 181-185 ◽  
Author(s):  
Bethel Faith Y. Rezaga ◽  
Mary Donnabelle L. Balela

Fusing of silver (Ag) nanoparticles synthesized in an aqueous system was observed at room temperature using halide solutions. The as-synthesized Ag nanoparticles have an average diameter of about 24 nm. After dispersing the Ag nanoparticles in a halide solution, a significant increase in particle size to about 188-197 nm was observed. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance was reduced from 110 kiloohms to 35 and 9.3 ohms for the as-prepared and sintered Ag nanoparticles using NaBr and NaCl solution, respectively.


2017 ◽  
Vol 897 ◽  
pp. 634-637
Author(s):  
Yi Wei ◽  
Ahmed Fadil ◽  
Hai Yan Ou

Silver (Ag) nanoparticles (NPs) were deposited on the surface of bulk Nitrogen-Boron co-doped 6H silicon carbide (SiC), and the Ag NPs were observed to induce localized surface plasmons (LSP) resonances on the SiC substrate, which was expected to improve the internal quantum efficiency (IQE) of the emissions of the donor-acceptor pairs of the SiC substrate. Room-temperature measurements of photoluminescence (PL), transmittance and time-resolved photoluminescence (TRPL) were applied to characterize the LSP resonances. Through the finite-difference time-domain (FDTD) simulation of the LSP resonance of an Ag nanoparticle on the SiC substrate, it is predicted that when the diameter of the cross section on the xy plane of the Ag nanoparticle is greater than 225 nm, the LSP starts to enhance the PL intensity. With implementation of a 3rd order exponential decay fitting model to the TRPL results, it is found that the average minority carrier lifetime of the SiC substrate decreased.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34737-34743 ◽  
Author(s):  
Yufeng Shan ◽  
Yong Yang ◽  
Yanqin Cao ◽  
Hao Yin ◽  
Nguyen Viet Long ◽  
...  

Ag nanoparticle decorated hydrogenated TiO2 nanowires are fabricated as surface-enhanced Raman scattering substrates that are self-cleaning and reusable, and show high reproducibility, sensitivity, and stability.


Nanoscale ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 5226-5234 ◽  
Author(s):  
Ming-Zheng Ge ◽  
Chun-Yan Cao ◽  
Shu-Hui Li ◽  
Yu-Xin Tang ◽  
Lu-Ning Wang ◽  
...  

An ultrasonication-assisted in situ deposition strategy was developed to realize uniform Ag nanoparticles dispersed on TiO2 nanotube arrays (Ag@TiO2 NTAs).


Sign in / Sign up

Export Citation Format

Share Document