extinction cross section
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
pp. 015003
Author(s):  
Irving Rondón

Abstract We present a general expression for the optical theorem in terms of Localized Waves. This representation is well-known and commonly used to generate Frozen waves, Xwaves, and other propagation invariant beams. We analyze several examples using different input beam sources on a circular detector to measure the extinction cross-section.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 227
Author(s):  
Kirill Khabarov ◽  
Messan Nouraldeen ◽  
Sergei Tikhonov ◽  
Anna Lizunova ◽  
Olesya Seraya ◽  
...  

In this paper, we investigated the interaction of nanosecond pulsed-periodic infrared (IR) laser radiation at a 50 and 500 Hz repetition rate with aerosol platinum (Pt) and silver (Ag) nanoparticles agglomerates obtained in a spark discharge. Results showed the complete transformation of Pt dendrite-like agglomerates with sizes of 300 nm into individual spherical nanoparticles directly in a gas flow under 1053 nm laser pulses with energy density 3.5 mJ/cm2. Notably, the critical energy density required for this process depended on the size distribution and extinction of agglomerates nanoparticles. Based on the extinction cross-section spectra results, Ag nanoparticles exhibit a weaker extinction in the IR region in contrast to Pt, so they were not completely modified even under the pulses with energy density up to 12.7 mJ/cm2. The obtained results for Ag and Pt laser sintering were compared with corresponding modification of gold (Au) nanoparticles studied in our previous work. Here we considered the sintering mechanisms for Ag, Pt and Au nanoparticles agglomerates in the aerosol phase and proposed the model of their laser sintering based on one-stage for Pt agglomerates and two-stage shrinkage processes for Au and Ag agglomerates.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3244
Author(s):  
Yuri A. Eremin ◽  
Thomas Wriedt

In the present paper, the generalization of the optical theorem to the case of a penetrable particle deposited near a transparent substrate that is excited by a multipole of an arbitrary order and polarization has been derived. In the derivation we employ classic Maxwell’s theory, Gauss’s theorem, and use a special representation for the multipole excitation. It has been shown that the extinction cross-section can be evaluated by the calculation of some specific derivatives from the scattered field at the position of the multipole location, in addition to some finite integrals which account for the multipole polarization and the presence of the substrate. Finally, the present paper considers some specific examples for the excitation of a particle by an electric quadrupole.


2021 ◽  
Vol 21 (23) ◽  
pp. 17807-17832
Author(s):  
Michaël Sicard ◽  
Oriol Jorba ◽  
Jiang Ji Ho ◽  
Rebeca Izquierdo ◽  
Concepción De Linares ◽  
...  

Abstract. This paper investigates the mechanisms involved in the dispersion, structure, and mixing in the vertical column of atmospheric pollen. The methodology used employs observations of pollen concentration obtained from Hirst samplers (we will refer to this as surface pollen) and vertical distribution (polarization-sensitive lidar), as well as nested numerical simulations with an atmospheric transport model and a simplified pollen module developed especially for this study. The study focuses on the predominant pollen type, Pinus, of the intense pollination event which occurred in the region of Barcelona, Catalonia, NE Spain, during 27–31 March 2015. First, conversion formulas are expressed to convert lidar-derived total backscatter coefficient and model-derived mass concentration into pollen grains concentration, the magnitude measured at the surface by means of aerobiological methods, and, for the first time ever, a relationship between optical and mass properties of atmospheric pollen through the estimation of the so-called specific extinction cross section is quantified in ambient conditions. Second, the model horizontal representativeness is assessed through a comparison between nested pollen simulations at 9, 3, and 1 km horizontal resolution and observed meteorological and aerobiological variables at seven sites around Catalonia. Finally, hourly observations of surface and column concentration in Barcelona are analyzed with the different numerical simulations at increasing horizontal resolution and varying sedimentation/deposition parameters. We find that the 9 or 3 km simulations are less sensitive to the meteorology errors; hence, they should be preferred for specific forecasting applications. The largest discrepancies between measured surface (Hirst) and column (lidar) concentrations occur during nighttime, where only residual pollen is detected in the column, whereas it is also present at the surface. The main reason is related to the lidar characteristics which have the lowest useful range bin at ∼ 225 m, above the usually very thin nocturnal stable boundary layer. At the hour of the day of maximum insolation, the pollen layer does not extend up to the top of the planetary boundary layer, according to the observations (lidar), probably because of gravity effects; however, the model simulates the pollen plume up to the top of the planetary boundary layer, resulting in an overestimation of the pollen load. Besides the large size and weight of Pinus grains, sedimentation/deposition processes have only a limited impact on the model vertical concentration in contrast to the emission processes. For further modeling research, emphasis is put on the accurate knowledge of plant/tree spatial distribution, density, and type, as well as on the establishment of reliable phenology functions.


2021 ◽  
Author(s):  
Giulia Crotti ◽  
Andrea Schirato ◽  
Remo Proietti-Zaccaria ◽  
Giuseppe Della Valle

Abstract The approximated analytical approach of Quasi-Static Theory (QST) is widely used in modelling the optical response of plasmonic nanoparticles. It is well known that its accuracy is remarkable provided that the particle is much smaller than the wavelength of the interacting radiation and that the field induced inside the structure is approximately uniform. Here, we investigate the limits of QST range of validity for gold nanostructures freestanding in air. First, we compare QST predictions of scattering spectra of nanospheres and cylindrical nanowires of various sizes with the exact results provided by Mie scattering theory. We observe a non-monotonic behaviour of the error of QST as a function of the characteristic length of the nanostructures, revealing a non-trivial scaling of its accuracy with the scatterer size. Second, we study nanowires with elliptical section upon different excitation conditions by performing finite element numerical analysis. Comparing simulation results with QST estimates of the extinction cross-section, we find that QST accuracy is strongly dependent on the excitation conditions, yielding good results even if the field is highly inhomogeneous inside the structure.


2021 ◽  
pp. 1-6
Author(s):  
Serap Yiğit Gezgin ◽  
Abdullah Kepceoğlu ◽  
Hamdi Şükür Kiliç

In this study, silver (Ag) nanoparticle thin films were deposited on microscope slide glass and Si wafer substrates using the pulsed-laser deposition (PLD) technique in Ar ambient gas pressures of 1 × 10−3 and 7.5 × 10−1 mbar. AFM analysis has shown that the number of Ag nanoparticles reaching the substrate decreased with increasing Ar gas pressure. As a result of Ar ambient gas being allowed into the vacuum chamber, it was observed that the size and height of Ag nanoparticles decreased and the interparticle distances decreased. According to the absorption spectra taken by a UV–vis spectrometer, the wavelength where the localised surface plasmon resonance (LSPR) peak appeared was shifted towards the longer wavelength region in the solar spectrum as Ar background gas pressure was decreased. This experiment shows that LSPR wavelength can be tuned by adjusting the size of metal nanoparticles, which can be controlled by changing Ar gas pressure. The obtained extinction cross section spectra for Ag nanoparticle thin film was theoretically analysed and determined by using the metal nanoparticle–boundary element method (MNPBEM) toolbox simulation program. In this study, experimental spectrum and simulation data for metal nanoparticles were acquired, compared, and determined to be in agreement.


Author(s):  
Asef Kheirandish ◽  
Nasser Sepehri Javan ◽  
Hosein Mohammadzadeh

In a Drude-like model for the conduction electrons of Metal Nanoparticles (MNPs) in a periodic linear chain, considering dipole-dipole interactions of adjacent particles, an analytical expression is derived for each particle permittivity for two different polarizations of incident light: parallel with and perpendicular to the chain line. A numerical analysis is carried out for a chain including 10 identical gold Nanoparticles (NPs) for two different sizes of NPs and two different host media of air and glass. It is shown that in the parallel case of polarization, interaction of NPs leads to a substantial increase in the extinction cross section and the red-shift of the Surface Plasmon Resonance (SPR) wavelength. In comparison with the linear properties of a single NP, the second and penultimate particles have the most increase in the extinction cross section and SPR wavelength displacement while the first and last particles experience the least variations due to the mutual interactions. For the perpendicular polarization, inversely, the dipolar coupling causes the decrease in extinction cross section of all particles and the blue-shift of SPR wavelength. For the parallel polarization, the absolute values of the real and imaginary parts of complex permittivity of each MNP decrease in comparison with the single particle case while they increase for the perpendicular state of polarization.


2021 ◽  
Author(s):  
Kinde Yeneayehu ◽  
Teshome Senbeta ◽  
Belayneh Mesfin

Abstract In this work, the scattering, absorption, and extinction cross-sections of 𝐹𝑒3𝑂4@Ag core/shell spherical nanostructures embedded in a dielectric host matrix are investigated theoretically. Electrostatic approximation and Maxwell-Garnet effective medium theory are employed to obtain the effective electric permittivity and magnetic permeability, as well as the corresponding absorption, scattering, and extinction cross-sections. Likewise, for a fixed size of QDs (of radius 𝑎𝑠 = 10 nm) numerical analysis is performed to see the effect of varying the metal fraction (𝛽) and the permittivity (𝜀ℎ) of the host matrix on the magneto-plasmonic nanostructures. The results show that graphs of absorption, scattering, and extinction cross-sections as a function of wavelength have two sets of resonance peaks in the UV and visible regions. These sets of peaks arise due to the strong coupling of the surface plasmon oscillations of silver with the excitonic state of the semiconductor/dielectric at the inner (𝐹𝑒3𝑂4@Ag) and outer (Ag/host) interfaces. The absorption and scattering crosssections are blue-shifted in the first peak and red-shifted for the second set of peaks as 𝛽 increases. Similarly, the extinction cross-section possesses two sets of resonance peaks which are enhanced for an increase in 𝜀ℎ or decrease of 𝛽; keeping one of these two parameters constant at a time. The results obtained may be utilized in applications that incorporates both the plasmonic and magnetic effects in core/shell nanostructures.


2021 ◽  
Author(s):  
Michaël Sicard ◽  
Oriol Jorba ◽  
Jiang Ji Ho ◽  
Rebeca Izquierdo ◽  
Concepción De Linares ◽  
...  

Abstract. This paper investigates the mechanisms involved in the dispersion, structure and mixing in the vertical column of atmospheric pollen. The methodology used employs observations of pollen concentration obtained from Hirst samplers (we will refer to as surface pollen) and vertical distribution (polarization-sensitive lidar) as well as nested numerical simulations with an atmospheric transport model and a simplified pollen module developed especially for this study. The study focuses on the predominant pollen type, Pinus, of the intense pollination event which occurred in the region of Barcelona, Catalonia, NE Spain, during 27–31 March, 2015. First, conversion formulas are expressed to convert lidar-derived total backscatter coefficient and model-derived mass concentration into pollen grains concentration, the magnitude measured at the surface by means of aerobiological methods, and for the first time ever, a relationship between optical and mass properties of atmospheric pollen, through the estimation of the so-called specific extinction cross-section, is quantified in ambient conditions. Second, the model horizontal representativeness is assessed through comparison between nested pollen simulations at 9, 3 and 1 km horizontal resolution and observed meteorological and aerobiological variables at seven sites around Catalonia. Finally, hourly observations of surface and column concentration in Barcelona are analysed with the different numerical simulations at increasing horizontal resolution and varying sedimentation/deposition parameters. We find that the 9 or 3 km simulations are less sensitive to the meteorology errors hence they should be preferred for specific forecasting applications. The largest discrepancies between measured surface (Hirst) and column (lidar) concentrations occur during nighttime: only residual pollen is detected in the column whereas it is present at the surface. The main reason is related to the lidar characteristics which has a lowest useful range bin at ~225 m, above the usually very thin nocturnal stable boundary layer. At the hour of the day of maximum insolation, the pollen layer does not extend up to the top of the planetary boundary layer according to the observations (lidar), probably because of gravity effects; however, the model simulates the pollen plume up to the top of the planetary boundary layer, resulting in an overestimation of the pollen load. Besides the large size and weight of Pinus grains, sedimentation/deposition processes have only a limited impact on the model vertical concentration in contrast to the emission processes. For further modelling research, emphasis is put on the accurate knowledge of plant/tree spatial distribution, density and type, as well as on the establishment of reliable phenology functions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1324
Author(s):  
Yury M. Shulga ◽  
Eugene N. Kabachkov ◽  
Vitaly I. Korepanov ◽  
Igor I. Khodos ◽  
Dmitry Y. Kovalev ◽  
...  

Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems’ smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core–shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core–shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved.


Sign in / Sign up

Export Citation Format

Share Document