scholarly journals Sonochemical reaction to control the near-infrared photoluminescence properties of single-walled carbon nanotubes

Nanoscale ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 6263-6270 ◽  
Author(s):  
Yutaka Maeda ◽  
Yui Konno ◽  
Akane Nishino ◽  
Michio Yamada ◽  
Saki Okudaira ◽  
...  

A simple one-step operation to control the PL properties of SWNTs by ultrasonic irradiation was developed with an appropriate surfactant under the optimized conditions of the irradiation time, SWNT concentration, and reaction atmosphere.

2012 ◽  
Vol 11 (05) ◽  
pp. 1250034
Author(s):  
ALEX T. SHEARDY ◽  
JEREMY J. TAYLOR ◽  
JENNIFER L. CHILEK ◽  
SYNYOUNG LI ◽  
RUHUNG WANG ◽  
...  

Previously, we demonstrated the selective NIR-mediated ablation of tumor cells in vitro using pristine single-walled carbon nanotubes (SWNTs) with adsorbed tumor-targeting ligands and carboxylated SWNTs with covalently-attached ligands. The covalent approach is advantageous in ensuring that protein ligands remain associated with the NIR-absorbing SWNTs in biological matrices and the noncovalent approach has the advantage of enabling SWNT functionalization without perturbation of the SWNT lattice and photothermal properties. Herein, we compare the ability of moderately-carboxylated (~ 4 at.% carboxylic acid groups) and pristine SWNT materials to absorb 808 nm radiation and convert it to heat. Under conditions of a constant 808 nm laser power density, the approach involved measuring the temperature of aqueous dispersions of protein-coated SWNTs as a function of the irradiation time. Nearly identical temperature profiles were observed for dispersions of moderately-carboxylated and pristine SWNTs possessing matched 808 nm optical densities and equivalent concentrations of carbonaceous species (i.e., SWNTs and amorphous carbon impurities). The results indicate that the amount of carbonaceous species in purified dispersions of protein-coated SWNTs is more important for converting absorbed 808 nm radiation into heat than whether or not the SWNTs were moderately carboxylated, and that moderately-carboxylated SWNTs could be the SWNT-material of choice for the targeted photothermal ablation of tumor cells.


Nanoscale ◽  
2018 ◽  
Vol 10 (48) ◽  
pp. 23012-23017 ◽  
Author(s):  
Yutaka Maeda ◽  
Yui Konno ◽  
Michio Yamada ◽  
Pei Zhao ◽  
Xiang Zhao ◽  
...  

Single-walled carbon nanotubes (SWNTs) were functionalized by reacting them with sodium naphthalenide and dendrons to control their photoemission in the near-IR region.


RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 24772-24786
Author(s):  
Sveta Zhiraslanovna Ozkan ◽  
Galina Petrovna Karpacheva ◽  
Mikhail Nikolaevich Efimov ◽  
Andrey Aleksandrovich Vasilev ◽  
Dmitriy Gennad'evich Muratov ◽  
...  

In a self-organizing system within one stage under IR heating conditions, hybrid nanomaterials are formed with a structure that contains bimetallic Co–Fe particles, free or immobilized on the SWCNT surface, dispersed in the polymer PDPA matrix.


2015 ◽  
Vol 51 (70) ◽  
pp. 13462-13465 ◽  
Author(s):  
Yutaka Maeda ◽  
Yuya Takehana ◽  
Michio Yamada ◽  
Mitsuaki Suzuki ◽  
Tatsuya Murakami

Alkylation and subsequent thermal treatment of SWNTs induces a new bright PL peak in the NIR region.


2011 ◽  
Vol 20 (03) ◽  
pp. 687-695 ◽  
Author(s):  
DOMINICK J. BINDL ◽  
MICHAEL S. ARNOLD

A photovoltaic photodetector harnessing near infrared band gap absorption by thin films of post-synthetically sorted semiconducting single walled carbon nanotubes ( s -SWCNTs) is described. Peak specific detectivity of 6×1011 Jones at -0.1 V bias at 1210 nm is achieved using a heterojunction device architecture: indium tin oxide/ ca. 5 nm s -SWCNT / 120 nm C60 / 10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) / Ag. The photodiodes are characterized by a series resistance of 2.9 Ω cm2 and a rectification ratio of 104 at ±1V. These results are expected to guide the exploration of new classes of solution-processable, mechanically flexible, integrable, thin film photovoltaic photodetectors with tunable sensitivity in the visible and infrared spectra based on semiconducting carbon nanotubes.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 473-485
Author(s):  
Felipe Wasem Klein ◽  
Jean-Philippe Lamps ◽  
Matthieu Paillet ◽  
Pierre Petit ◽  
Philippe J. Mésini

The functionalization of carbon nanotubes by polymers necessitates two steps, first their modification by oxidizing them or by covalently attaching small compounds to them, then the growth of the polymer chains from these anchors or their grafting onto them. In order to better control the process and the rate of functionalization, we develop polymers able to covalently react with the carbon nanotubes by their side chains in one step. We describe the synthesis of a copolymer of dodecylthiophene and its analogue bearing an aniline group at the end of the dodecyl side chain. This copolymer can functionalize single-walled carbon nanotubes (SWNTs) non-covalently and disperse more SWNTs than its hexyl analogues. UV-Vis and fluorescence spectroscopies show that in these non-covalent hybrids, the polymer forms p-stacked aggregates on the SWNTs. The non-covalent hybrids can be transformed into covalent ones by diazonium coupling. In these covalent hybrids the polymer is no longer p-stacked. According to Raman spectroscopy, the conformation of the poly(3-hexylthiophene) backbone is more ordered in the non-covalent hybrids than in the covalent ones.


2013 ◽  
Vol 8 (11) ◽  
pp. 873-880 ◽  
Author(s):  
Nicole M. Iverson ◽  
Paul W. Barone ◽  
Mia Shandell ◽  
Laura J. Trudel ◽  
Selda Sen ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lukasz Przypis ◽  
Maciej Krzywiecki ◽  
Yoshiaki Niidome ◽  
Haruka Aoki ◽  
Tomohiro Shiraki ◽  
...  

AbstractSingle-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.


Sign in / Sign up

Export Citation Format

Share Document