Synthesis and optical properties of a Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications

Nanoscale ◽  
2020 ◽  
Vol 12 (26) ◽  
pp. 14180-14187 ◽  
Author(s):  
Luyan Wu ◽  
Jie Hu ◽  
Qilin Zou ◽  
Yaling Lin ◽  
Decai Huang ◽  
...  

Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ nanocrystals with strong persistent luminescence in the NIR-II spectral region, which are highly desired for bioimaging, have been synthesized by a salt microemulsion method.

Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 8858-8863 ◽  
Author(s):  
Xia Tong ◽  
Hongyan Liang ◽  
Yanlong Liu ◽  
Long Tan ◽  
Dongling Ma ◽  
...  

Oriented arrays of silver nanorice or nanocarrots in stretched polymer films show polarization-dependent transmission of near-infrared light over a wide spectral region.


2020 ◽  
Vol 8 (40) ◽  
pp. 14100-14108 ◽  
Author(s):  
Zhihao Zhou ◽  
Xiaodong Yi ◽  
Puxian Xiong ◽  
Xingyi Xu ◽  
Zhijun Ma ◽  
...  

Cr3+-free near-infrared persistent luminescence materials from nontoxic Fe3+-activated LiGaO2 phosphors were developed and systematically investigated.


1996 ◽  
Author(s):  
Alphiya Y. Khairullina ◽  
Lilia Bui ◽  
Tatiana V. Oleinik ◽  
Nelli Artishevsky ◽  
Natalia Prigoun ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 637
Author(s):  
Hongliang Li ◽  
Zewen Lin ◽  
Yanqing Guo ◽  
Jie Song ◽  
Rui Huang ◽  
...  

The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.


Author(s):  
Yaling Lin ◽  
Jie Hu ◽  
Luyan Wu ◽  
Qilin Zou ◽  
Dejian Chen ◽  
...  

Persistent luminescence nanoparticles (PLNPs) emitting in the NIR window (700 - 1700 nm) have shown great promise in the field of fluorescence imaging due to their unique properties including the...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.


Sign in / Sign up

Export Citation Format

Share Document