Structure and microstructure of near infrared-absorbing Au–Au2S nanoparticles

2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.

2008 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.


2004 ◽  
Vol 34 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén ◽  
Tong Yun Shen

The use of near-infrared (NIR) spectroscopy to discriminate between uninfested seeds of Picea abies (L.) Karst and seeds infested with Plemeliella abietina Seitn (Hymenoptera, Torymidae) larva is sensitive to seed origin and year of collection. Five seed lots collected during different years from Sweden, Finland, and Belarus were used in this study. Initially, seeds were classified as infested or uninfested with X-radiography, and then, NIR spectra from single seeds were collected with a NIR spectrometer from 1100 to 2498 nm with a resolution of 2 nm. Discriminant models were derived by partial least squares regression using raw and orthogonal signal corrected spectra (OSC). The resulting OSC model developed on a pooled data set was more robust than the raw model and resulted in 100% classification accuracy. Once irrelevant spectral variations were removed by using OSC pretreatment, single-lot calibration models resulted in similar classification rates for the new samples irrespective of origin and year of collection. Dis criminant analyses performed with selected NIR absorption bands also gave nearly 100% classification rate for new samples. The origin of spectral differences between infested and uninfested seeds was attributed to storage lipids and proteins that were completely depleted in the former by the feeding larva.


2019 ◽  
Vol 43 (13) ◽  
pp. 5202-5213 ◽  
Author(s):  
Cristiana Costa ◽  
Joana Farinhas ◽  
João Avó ◽  
Jorge Morgado ◽  
Adelino M. Galvão ◽  
...  

The structural causes for NIR absorption bands on new [1,2,5]thiadiazolo[3,4-g]quinoxaline derivatives were determined on the basis of DFT calculations and organic photovoltaic cells incorporating the new compounds were fabricated.


2009 ◽  
Vol 17 (4) ◽  
pp. 213-221 ◽  
Author(s):  
Kamaranga H.S. Peiris ◽  
Michael O. Pumphrey ◽  
Floyd E. Dowell

The near infrared (NIR) absorption spectra of deoxynivalenol (DON) and single wheat kernels with or without DON were examined. The NIR absorption spectra of 0.5–2000 ppm of DON in acetonitrile were recorded in the 350–2500 nm range. Second derivative processing of the NIR spectra and spectral subtractions showed DON absorption bands at 1408 nm, 1904 nm and 1919 nm. NIR spectra of sound and Fusarium-damaged kernels were also acquired using two instruments. Subtraction of average absorption spectra and second derivative spectra were evaluated to identify different NIR signatures of the two types of kernel. Differences in peak height and positions of the NIR absorption bands of the kernels were noted. At 1204 nm, 1365 nm and 1700 nm, the differences were in the heights of the absorption peaks. Such differences may be attributed to changes in the levels of grain food reserves such as starches, proteins and lipids and other structural compounds. Shifts in absorption peak positions between the two types of kernels were observed at 1425–1440 nm and 1915–1930 nm. These differences may arise from other NIR active compounds, such as DON, which are not common for the two types of kernel. Since the NIR absorption of DON may have contributed to the shifts between sound and Fusarium-damaged kernels, this study indicates the potential for NIR spectrometry to evaluate Fusarium damage in single kernels based on the DON levels.


RSC Advances ◽  
2014 ◽  
Vol 4 (77) ◽  
pp. 41164-41171 ◽  
Author(s):  
Yoshikazu Tsukasaki ◽  
Masatoshi Morimatsu ◽  
Goro Nishimura ◽  
Takao Sakata ◽  
Hidehiro Yasuda ◽  
...  

This paper describes the synthesis and optical properties of PbS/CdS quantum dots for in vivo fluorescence imaging.


2017 ◽  
Vol 31 (13) ◽  
pp. 1750101 ◽  
Author(s):  
Ibrahim Bulus ◽  
S. A. Dalhatu ◽  
R. Hussin ◽  
W. N. Wan Shamsuri ◽  
Y. A. Yamusa

Achieving outstanding physical and optical properties of borosulfophosphate glasses via controlled doping of rare earth ions is the key issue in the fabrication of new and highly-efficient glass material for diverse optical applications. Thus, the effect of replacing P2O5 by Dy2O3 on the physical and optical properties of Dy[Formula: see text]-doped lithium-borosulfophosphate glasses with chemical composition of 15Li2O–30B2O3–15SO3–[Formula: see text]P2O5–[Formula: see text]Dy2O3 (where 0.0 mol.% [Formula: see text] mol.%) has been investigated. The glass samples were synthesized from high-purity raw materials via convectional melt-quenching technique and characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), density and UV–vis–NIR absorption measurements. The amorphous nature of the prepared glass samples was confirmed by XRD patterns whereas the EDX spectrum depicts elemental traces of O, C, B, S, P and Dy. The physical parameters such as density, refractive index, molar volume, polaron radius and field strength were found to vary nonlinearly with increasing Dy2O3 concentration. UV–vis–NIR absorption spectra revealed seven absorption bands with most dominant peak at 1269 nm (6H[Formula: see text]F[Formula: see text]H[Formula: see text]). From the optical absorption spectra, the optical bandgap and Urbach’s energy have been determined and are related with the structural changes occurring in these glasses with increase in Dy2O3 content. Meanwhile, the bonding parameters ([Formula: see text]) evaluated from the optical absorption spectra were found to be ionic in nature. The superior features exhibited by the current glasses nominate them as potential candidate for nonlinear optical applications.


2018 ◽  
Vol 71 (5) ◽  
pp. 373 ◽  
Author(s):  
Bolong Yao ◽  
Siyao Geng ◽  
Jie Wang ◽  
Likui Wang

Pigments with dark appearance and high solar energy reflectance are of great application value. In the present work, dark grey composite pigments with a TiO2/CuO core–shell structure were prepared through calcination of precursors obtained from the precipitation of Cu(OH)2 on TiO2 particles. The composition, structure, and optical properties of the synthesised powders were characterised by colourimetry, near-infrared diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The pigments are composed of rutile TiO2 and tenorite CuO, and the powder colour changes from white to dark grey as the Cu content increases. With a molar ratio of CuO to TiO2 of 0.6, the pigment presents optimal colour (a* = 1.66, b* = −2.19, L* = 52.37) and optical performance. The near-infrared reflectance, the solar reflectance in the near-infrared region, and the total solar reflectance reach 87.2, 70.6, and 37.2 %, respectively. Furthermore, it is demonstrated that the composite pigments exhibit a deeper colour and higher reflectivity than conventional dark-blended powders. These cool dark pigments could be applied in the coatings for buildings (roofs and walls) to improve building comfortability and reduce cooling energy consumption.


2008 ◽  
Vol 25 (6) ◽  
pp. 281-290 ◽  
Author(s):  
Shwayta Kukreti ◽  
Albert Cerussi ◽  
Bruce Tromberg ◽  
Enrico Gratton

We have discovered quantitative optical biomarkers unique to cancer by developing a double-differential spectroscopic analysis method for near-infrared (NIR, 650–1000 nm) spectra acquired non-invasively from breast tumors. These biomarkers are characterized by specific NIR absorption bands. The double-differential method removes patient specific variations in molecular composition which are not related to cancer, and reveals these specific cancer biomarkers. Based on the spectral regions of absorption, we identify these biomarkers with lipids that are present in tumors either in different abundance than in the normal breast or new lipid components that are generated by tumor metabolism. Furthermore, the O-H overtone regions (980–1000 nm) show distinct variations in the tumor as compared to the normal breast. To quantify spectral variation in the absorption bands, we constructed the Specific Tumor Component (STC) index. In a pilot study of 12 cancer patients we found 100% sensitivity and 100% specificity for lesion identification. The STC index, combined with other previously described tissue optical indices, further improves the diagnostic power of NIR for breast cancer detection.


2020 ◽  
Author(s):  
Tomas Kohout ◽  
Evgeniya Petrova ◽  
Grigoriy Yakovlev ◽  
Victor Grokhovsky ◽  
Antti Penttilä ◽  
...  

<p><strong>Introduction</strong></p><p>Shock-induced changes in planetary materials related to impacts or planetary collisions are known to be capable of altering their optical properties. One such example is observed in ordinary chondrite meteorites. The highly shocked silicate-rich ordinary chondrite material is optically darkened and its typical S-complex-like asteroid spectrum is altered toward a darker, featureless spectrum resembling the C/X complex asteroids. Thus, one can hypothesize that a significant portion of the ordinary chondrite material may be hidden within the observed C/X asteroid population.</p><p>The exact pressure-temperature conditions of the shock-induced darkening are, however, not well constrained and due to this gap in knowledge, it is not possible to correctly assess the significance of the shock darkening within the asteroid population. In order to address this shortcoming, we experimentally investigate the gradual changes in the chondrite material optical properties together with the associated mineral and textural features as a function of the shock pressure. For this purpose, we use a Chelyabinsk meteorite (LL5 chondrite), which is subjected to a spherical shock experiment. The spherical shock experiment geometry allows for a gradual increase in the shock pressure within a single spherically shaped sample from 15 GPa at its rim toward hundreds of gigapascals in the center.</p><p><strong>Results</strong></p><p>Four distinct zones were observed with an increasing shock load (Fig. 1). We number the zones in the direction of increasing shock from the outside toward the center as zones I–IV The optical changes in zone I are minimal up to ~50 GPa. In the region of ~50–60 GPa corresponding to zone II, shock darkening occurs due to the troilite melt infusion into silicates. This process abruptly ceases at pressures of ~60 GPa in zone III due to an onset of silicate melting and immiscibility of troilite and silicate melts. Silicate melt coats residual silicate grains and prevents troilite from further penetration into cracks. At pressures higher than ~150 GPa (zone IV), complete recrystallization occurs and is associated with a second-stage shock darkening due to fine troilite-metal eutectic grains.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.369960f7c0fe58218382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=65ce9691abaaf54f5e7768045027f7ea&ct=x&pn=gnp.elif" alt="" width="777" height="639"></p><p>The order of the spectral curves in the UV-VIS-NIR (ultraviolet – visible – near-infrared) region follows the visual brightness in which zone I is the brightest, followed by zones III and II, and zone IV is the darkest one (Fig. 2). The MIR reflectance (Fig. 3) follows the same albedo order as UV-VIS-NIR up to the primary Christiansen feature at 8.7 µm. At higher wavelengths in the Si-O reststrahlen bands region, the reflectance order changes with zones II and III, which are brighter than zones I and IV. The comparison of the powdered sample spectra to the one obtained from the rough saw-cut surface reveals the following trends. The overall reflectance of the powdered sample is an order of magnitude lower compared to the rough surface one. The reststrahlen bands in both samples show similar positions at approximately 9.1, 9.5–9.6, 10.3, 10.8, 11.3, and 11.8–12 µm. They are dominated by olivine with possible presence of orthopyroxene. The amplitudes of the reststrahlen bands are higher in the rough surface sample. The transparency feature at 12.7 µm is only observed in the powdered sample. The primary Christiansen feature at 8.7 µm is more pronounced in the powdered sample, while the secondary one at 15.6 µm is of a low amplitude in both samples.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ad38963ac0fe50178382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=1cbf38a911d6e0bef4cff605b284362f&ct=x&pn=gnp.elif" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.4ff3f9a9c0fe59658382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=9e7ff0973b952ce0eed7a0fbfc5b24cc&ct=x&pn=gnp.elif" alt=""></p><p><strong>Conclusions</strong></p><p>The important finding is the presence of the two distinct shock darkening mechanisms in ordinary chondrite material with characteristic material fabric and distinct pressure regions. These two regions are separated by a pressure interval where no darkening occurs. Thus, the volume of the darkened material produced during asteroid collisions may be somewhat lower than assumed from a continuous darkening process. While the darkening mainly affects the UV-VIS-NIR region and 1 and 2-µm silicate absorption bands, it does not significantly affect the silicate spectral features in the MIR region. These are more affected by material roughness. MIR observations have the potential to identify darkened ordinary chondrite material with an otherwise featureless UV-VIS-NIR spectrum.</p>


2021 ◽  
Author(s):  
Ali Ayoubikaskooli ◽  
Abdol Mohammad Ghaedi ◽  
Hamid Reza Shamlouei ◽  
Yadollah Saghapour

Abstract In this research, the C50 fullerene was employed as the source of the π electrons and the electron donor-acceptor groups were used to enhance its optical properties. Considerable enhancement in its electronic and optical property of as the result of donor and acceptor group presence was observed. For instance, in UV-Visible absorption spectrum, the number of absorption lines significantly increase which may be the relaxation of the electronic transition selection rules. Considerably, the substituted forms of C50, has numbers of absorption bands in near infrared region. The BH2–C50-NCH3Li and NO–C50-NCH3Li molecules have superior improvement in optical properties. Finally, the donor and acceptor groups influence on non-linear optical properties (NLO) of C50 were explored and the considerable improvement in NLO properties of C50 was observed which the NLO improvements for BH2-C50-NCH3Li and NO-C50-CH2Li cases is higher than others.


Sign in / Sign up

Export Citation Format

Share Document