Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery

2020 ◽  
Vol 11 (16) ◽  
pp. 2811-2821 ◽  
Author(s):  
Yudian Qiu ◽  
Zongyuan Zhu ◽  
Yalei Miao ◽  
Panke Zhang ◽  
Xu Jia ◽  
...  

The polymerization of dopamine and its coupling occur in succession, which synergistically induces the self-assembly of block copolymer to yield ordered structures, including micelles and vesicles.

2013 ◽  
Vol 705 ◽  
pp. 115-119
Author(s):  
Bao Yong Tian ◽  
Er Jun Tang ◽  
Miao Yuan ◽  
Rui Xia Hao ◽  
Cun Man Li ◽  
...  

The well-defined block copolymer PMMA-b-PS was prepared by two-step ATRP in emulsion system. GPC results indicate that Mn increased linearly with conversion and polydispersity remained relatively narrow. It presents the characteristics of living polymerization in emulsion system. FT-IR demonstrated that block copolymer PMMA-b-PS could be successfully synthesized by ATRP with macroinitiator PMMA-Cl in emulsion system. The morphological characteristic of the self-assembly depends on the block copolymer concentration and transforms between spheres and rodlike micelles. The property indicates a perfect potential application in drug delivery materials.


2005 ◽  
Vol 42 (3) ◽  
pp. 180-183 ◽  
Author(s):  
S. G. Schulz ◽  
U. Frieske ◽  
H. Kuhn ◽  
G. Schmid ◽  
F. Müller ◽  
...  

2021 ◽  
Author(s):  
Vignesh Suresh ◽  
Ah Bian Chew ◽  
Christina Yuan Ling Tan ◽  
Hui Ru Tan

Abstract Block copolymer (BCP) self-assembly processes are often seen as reliable techniques for advanced nanopatterning to achieve functional surfaces and create templates for nanofabrication. By taking advantage of the tunability in pitch, diameter and feature-to-feature separation of the self-assembled BCP features, complex, laterally organized- and stacked- multicomponent nanoarrays comprising of gold and polymer have been fabricated. The approaches not only demonstrate nanopatterning of up to two levels of hierarchy but also investigate how a variation in the feature-to-feature gap at the first hierarchy affects the self-assembly of polymer features at the second. Such BCP self-assembly enabled multicomponent nanoarray configurations are rarely achieved by other nanofabrication approaches and are particularly promising for pushing the boundaries of block copolymer lithography and in creating unique surface architectures and complex morphologies at the nanoscale.


2007 ◽  
Vol 364-366 ◽  
pp. 437-441
Author(s):  
Yong Zhi Cao ◽  
Shen Dong ◽  
Ying Chun Liang ◽  
Tao Sun ◽  
Yong Da Yan

Ultrathin block copolymer films are promising candidates for bottom-up nanotemplates in hybrid organic-inorganic electronic, optical, and magnetic devices. Key to many future applications is the long range ordering and precise placement of the phase-separated nanoscale domains. In this paper, a combined top-down/bottom-up hierarchical approach is presented on how to fabricate massive arrays of aligned nanoscale domains by means of the self-assembly of asymmetric poly (styrene-block-ethylene/butylenes-block-styrene) (SEBS) tirblock copolymers in confinement. The periodic arrays of the poly domains were orientated via the introduction of AFM micromachining technique as a tool for locally controlling the self-assembly process of triblock copolymers by the topography of the silicon nitride substrate. Using the controlled movement of 2- dimensional precision stage and the micro pressure force between the tip and the surface by computer control system, an artificial topographic pattern on the substrate can be fabricated precisely. Coupled with solvent annealing technique to direct the assembly of block copolymer, this method provides new routes for fabricating ordered nanostructure. This graphoepitaxial methodology can be exploited in hybrid hard/soft condensed matter systems for a variety of applications. Moreover, Pairing top-down and bottom-up techniques is a promising, and perhaps necessary, bridge between the parallel self-assembly of molecules and the structural control of current technology.


Soft Matter ◽  
2014 ◽  
Vol 10 (46) ◽  
pp. 9212-9219 ◽  
Author(s):  
Zhaoxia Jin ◽  
Hailong Fan

In this highlight, we discuss the self-assembly of block copolymer (BCP) nanoparticles.


Polymer ◽  
2008 ◽  
Vol 49 (25) ◽  
pp. 5596-5601 ◽  
Author(s):  
Yingdong Xia ◽  
Zhaoyan Sun ◽  
Tongfei Shi ◽  
Jizhong Chen ◽  
Lijia An ◽  
...  

2015 ◽  
Vol 62 ◽  
pp. 108-115 ◽  
Author(s):  
L. Iannarelli ◽  
R. Nisticò ◽  
P. Avetta ◽  
M. Lazzari ◽  
G. Magnacca ◽  
...  

2016 ◽  
Vol 4 (48) ◽  
pp. 8025-8032 ◽  
Author(s):  
D. Sirisha Janni ◽  
U. Chandrasekhar Reddy ◽  
Soumya Saroj ◽  
K. M. Muraleedharan

The self-assembly of non-ionic amphiphiles with hydroxylated oxanorbornane head-group was controlled using amino acid units as spacers between hydrophilic and lipophilic domains to get spherical supramolecular aggregates suitable for drug delivery applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44218-44221 ◽  
Author(s):  
Elio Poggi ◽  
Jean-Pierre Bourgeois ◽  
Bruno Ernould ◽  
Jean-François Gohy

We report a novel approach to synthesize well-defined polymeric Janus nanoparticles by combining the self-assembly of block copolymers in thin films and surface modification by polymer grafting.


Sign in / Sign up

Export Citation Format

Share Document