scholarly journals Two-dimensional β-MoO3@C nanosheets as high-performance negative materials for supercapacitors with excellent cycling stability

RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17497-17505
Author(s):  
Xuexia Liu ◽  
Ying Wu ◽  
Huiwen Wang ◽  
Yinfeng Wang ◽  
Chunfang Huang ◽  
...  

MoO3 has gained a great deal of attention as a promising electrode material in energy storage devices.

RSC Advances ◽  
2019 ◽  
Vol 9 (31) ◽  
pp. 17706-17716 ◽  
Author(s):  
Jinjun Tian ◽  
Yan Xue ◽  
Xinping Yu ◽  
Yuanchao Pei ◽  
Hucheng Zhang ◽  
...  

A two-dimensional (2D) nanoporous Ni(OH)2 film was successfully developed from triethanolamine (TEA) as the alkali source and soft template using a scalable hydrothermal technique.


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2017 ◽  
Vol 5 (3) ◽  
pp. 1094-1102 ◽  
Author(s):  
Yang Jiao ◽  
Jian Pei ◽  
Dahong Chen ◽  
Chunshuang Yan ◽  
Yongyuan Hu ◽  
...  

Metal–organic frameworks (MOFs) have obtained increasing attention as a kind of novel electrode material for energy storage devices.


2016 ◽  
Vol 4 (9) ◽  
pp. 3356-3361 ◽  
Author(s):  
Wei Wang ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

Herein we report the optimized growth of pillared graphene nanostructures (PGNs) on nickel foil substrates. The PGN supercapacitor demonstrates excellent cycling stability, and outstanding electrochemical reversibility under high rate, leading to energy storage devices with superb cycling stability and outstanding power density.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2346
Author(s):  
Hem Prakash Karki ◽  
Hyojae Kim ◽  
Jinmu Jung ◽  
Jonghyun Oh

It is necessary to investigate effective energy storage devices that can fulfill the requirements of short-term and long-term durable energy outputs. Here, we report a simple one-pot hydrothermal technique through which to fabricate the MoS2/Te nanocomposite to be used as an effective electrode material for high-performance supercapacitors. Comprehensive characterization of the as-fabricated nanomaterial was performed using FESEM, HRTEM, XRD, FTIR, XPS, etc., as well as electrochemical characterizations. The electrochemical characterization of the as-fabricated nanocomposite electrode material showed a high specific capacitance of 402.53 F g−1 from a galvanostatic charge-discharge (GCD) profile conducted at 1 A g−1 current density. The electrode material also showed significant rate performance with high cyclic stability reaching up to 92.30% under 4000 cycles of galvanostatic charge-discharge profile at a current density of 10 A g−1. The highly encouraging results obtained using this simple synthetic approach demonstrate that the hetero-structured nanocomposite of MoS2/Te electrode material could serve as a promising composite to use in effective supercapacitors or energy storage devices.


Ionics ◽  
2021 ◽  
Author(s):  
Morteza Saghafi Yazdi ◽  
Seied Ali Hosseini ◽  
Zeynodin Karami ◽  
Ali Olamaee ◽  
Mohammad Abedini ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


Sign in / Sign up

Export Citation Format

Share Document