scholarly journals Functionalized polyhedral oligosilsesquioxane (POSS) based composites for bone tissue engineering: synthesis, computational and biological studies

RSC Advances ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11325-11334 ◽  
Author(s):  
Laura Legnani ◽  
Daniela Iannazzo ◽  
Alessandro Pistone ◽  
Consuelo Celesti ◽  
Salvatore Giofrè ◽  
...  

Functionalized POSS containing an isoxazolidine nucleus have been synthesized by 1,3-dipolar cycloaddition and conjugated with chitosan for bone tissue engineering applications.

2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


2018 ◽  
Vol 20 (12) ◽  
pp. 1800329 ◽  
Author(s):  
Chandra Khatua ◽  
Dipten Bhattacharya ◽  
Biswanath Kundu ◽  
Vamsi Krishna Balla ◽  
Subhadip Bodhak ◽  
...  

2021 ◽  
Vol 06 ◽  
Author(s):  
Varun Saxena ◽  
Lalit Pandey ◽  
T. S. Srivatsan

Background: Hydroxyapatite (HAp) is one of the most studied biomimic for biomedical applications. Specially, nano-HAp has been utilized for bone tissue engineering various orthopedic applications. HAp possesses various suitable properties such as bioactivity, biodegradability and cell proliferation efficiency for bone tissue engineering applications. Yet, lacks in self-antibacterial activity, high surface area and target efficiency. Results: In this directioon, researchers have focused on exploring the required surface as well as the inherent properties of HAp at the nanoscale. These properties are largely dependent on the composition, size and morphology of the nano-HAp. Hence, nano-HAp has been found to be an excellent candidate with an attractive combination of properties for selection and use in biomedical applications, those required to enhanced biological responses. Further, depending on the type of application, these factors can be tuned to optimize the performance. Conclusion: In this review article, we focus on the chemical structure of HAp and the routes chosen and used for the synthesis of the nano-HAp. The role of various parameters in controlling synthesis at the nanoscale are presented and briefly discussed. In addition, we provide an overview of the various applications for the pristine and doped nano-HAp with recent examples in areas spanning the following: (i) bone tissue engineering applications, (ii) drug delivery applications, (iii) surface coatings, and (iv) scaffolds. The effect of chemical composition on the mechanical properties, surface properties and biological properties are also highlighted. Nano-HAp is found to be highly proficient for its biomedical applications, especially for bone tissue engineering applications. The nano-sized properties enhances the biological responses. The dopant ions that replaces the Ca ion into the hydroxyapatite (HAp) lattice plays a crucial role in its biomedical applications


2021 ◽  
Vol 191 ◽  
pp. 500-513
Author(s):  
Maryam Abdollahi Asl ◽  
Saeed Karbasi ◽  
Saeed Beigi-Boroujeni ◽  
Soheila Zamanlui Benisi ◽  
Mahdi Saeed

Sign in / Sign up

Export Citation Format

Share Document