scholarly journals Electrodeposited nickel–graphene nanocomposite coating: effect of graphene nanoplatelet size on its microstructure and hardness

RSC Advances ◽  
2020 ◽  
Vol 10 (37) ◽  
pp. 22080-22090 ◽  
Author(s):  
Tran Van Hau ◽  
Pham Van Trinh ◽  
Nguyen Phuong Hoai Nam ◽  
Nguyen Van Tu ◽  
Vu Dinh Lam ◽  
...  

The effect of graphene nanoplatelet size on the microstructure and hardness of electrodeposited nickel–graphene nanocomposite coatings was investigated.

Author(s):  
R Raveen ◽  
J Yoganandh ◽  
S SathieshKumar ◽  
N Neelakandeswari

Cobalt–graphene nanocomposite coatings possess unique mechanical and tribological properties which attract researchers to explore its potential for various industrial applications. This research work presents the investigation on cobalt–graphene nanocomposite coatings, with two different graphene compositions cobalt–graphene (0.15 and 0.45 wt%) prepared by pulsed electrodeposition from aqueous bath involving cobalt chloride, trisodium citrate, and citric acid on low carbon steel substrate. Studies on coating morphology, microhardness, tribological characteristics such as wear and corrosion for the cobalt–graphene nanocomposite coatings were reported. Cobalt–graphene (0.45 wt%) nanocomposite coating which exhibits low wear rate in all load conditions due to the self-lubricating property of graphene and cobalt–graphene (0.15 wt%) nanocomposite coating shows higher corrosion resistance due to its layered cauliflower surface morphology.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Mian Hammad Nazir ◽  
Zulfiqar Ahmad Khan ◽  
Adil Saeed ◽  
Vasilios Bakolas ◽  
Wolfgang Braun ◽  
...  

2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940019 ◽  
Author(s):  
Weihui Zhang ◽  
Di Cao ◽  
Yanxin Qiao ◽  
Yuxin Wang ◽  
Xiang Li ◽  
...  

Duplex Ni-P-TiO2/Ni coatings were deposited on the brass substrate by using two baths. Ni-P-TiO2 nanocomposite coatings were electroplated as the outer layer on the Ni-plated brass substrate by adding transparent TiO2 sol (0–50 mL/L) into the Ni-P plating solution. The microstructure, mechanical property and corrosion resistance of the duplex Ni-P-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the interface of duplex coating was uniform and the adhesion between two layers was extremely good. The microhardness of duplex Ni-P-12.5 mL/L TiO2 /Ni coating was [Formula: see text]616 HV[Formula: see text] compared to [Formula: see text]539 HV[Formula: see text] of Ni-P /Ni coating and [Formula: see text]307 HV[Formula: see text] of single Ni coating. Meanwhile, the wear resistance and the corrosion resistance of the duplex nanocomposite coating have also been improved remarkably compared with single Ni coating. However, adding excessive TiO2 sol (more than 12.5 mL/L) caused the agglomeration of TiO2 nanoparticles and led to a porous structure in the outer layer, resulting in the deterioration of coating properties.


2010 ◽  
Vol 636-637 ◽  
pp. 1079-1083 ◽  
Author(s):  
Augusto Gomes ◽  
I. Almeida ◽  
Tania Frade ◽  
Ana C. Tavares

This work presents the corrosion behaviour of the as-prepared of Zn-TiO2 and ZnNi-TiO2 films in neutral Na2SO4 solution and a first attempt to correlate with their composition, morphology and structure. The films were prepared by galvanostatic pulse method onto steel electrodes, at room temperature. The X-ray diffraction study revealed that the ZnNi alloy consists of a homogenous Ni5Zn21 phase and that the preferred crystallographic orientation of Zn deposits changes in the presence of TiO2. The SEM results show that the morphology of the metallic coating is function of the metal phase composition and become more porous in the presence of 1.5 wt% TiO2.The corrosion parameters for the nanocomposite coatings were compared with those of pure Zn and ZnNi electrodeposits, and the ZnNi-TiO2 nanocomposite coating shows the less cathodic corrosion potential.


Sign in / Sign up

Export Citation Format

Share Document