scholarly journals Toluene adsorption on porous Cu–BDC@OAC composite at various operating conditions: optimization by response surface methodology

RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35582-35596
Author(s):  
Amir Hossein Khoshakhlagh ◽  
Farideh Golbabaei ◽  
Mojtaba Beygzadeh ◽  
Francisco Carrasco-Marín ◽  
Seyed Jamaleddin Shahtaheri

The work presented here describes the synthesis of Cu–BDC MOF (BDC = 1,4-benzenedicarboxylate) based on oxidized activated carbon (microporous Cu–BDC@OAC composite) using an in situ method.

Author(s):  
Abrar Muslim ◽  
Marwan Marwan ◽  
Ramli Saifullah ◽  
Muhammad Yahya Azwar ◽  
Darmadi Darmadi ◽  
...  

2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


2012 ◽  
Vol 581-582 ◽  
pp. 819-822 ◽  
Author(s):  
Bin Meng ◽  
Jin Hui Peng

The corundum-mullite was toughened by in-situ synthesized mullite whiskers and the process parameters influencing the fracture toughness of corundum-mullite, such as sintering temperature, addition amount of AlF3 and V2O5, were optimized by means of response surface method. Corundum-mullite with fracture toughness of 9.44 MPa.m-1/2 could be obtained under the optimized conditions, i.e. sintering temperature of 1400°C, 4.8 wt.% of AlF3 and 5.8 wt.% of V2O5. The results showed that it was feasible to prepare corundum-mullite toughened by in-situ synthesized mullite whiskers by the optimized parameters. In addition, an accurate model based on response surface method was proposed to predict the experimental results.


Sign in / Sign up

Export Citation Format

Share Document