cr removal
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed El Khomri ◽  
Noureddine El Messaoudi ◽  
Abdellah Dbik ◽  
Safae Bentahar ◽  
Abdellah Lacherai ◽  
...  

Purpose Argan nutshell wood (ANW) has been used in this study as an agricultural solid waste to remove Congo red (CR) from an aqueous solution in single and mixture binary in the presence of methylene blue (MB) or crystal violet (CV). Design/methodology/approach The ANW was characterized by Fourier transform infrared and scanning electron microscope analysis. The effect of ANW dose (8–40 gL−1), contact time (0–180 min), pH of the solution (4–11) and CR dye concentration (100–500 mgL−1) on CR adsorption was studied in batch mode and evaluated by kinetic and isotherm models in a single system. In the binary system, the CR removal was studied from a CR + MB and CR + CV mixture with different percentages of dyes, ranging from 0% to 100%. Findings The pseudo-second-order and the Langmuir models could best describe the CR sorption onto ANW in a single system. In addition, in the case of the binary system, there is the appearance of a synergistic phenomenon between the CR and the other cationic dyes and the CR adsorption capacity increased until 12.24 mg g-1 and 12.06 mg g-1 in the presence of the MB and CV in the mixture, respectively. Practical implications This study demonstrated that ANW prepared can be suggested as an excellent potential adsorbent to remove dyes from wastewaters from single and mixture systems. Originality/value This study is original.


2021 ◽  
Vol 1979 (1) ◽  
pp. 012009
Author(s):  
Meghna Datta ◽  
Muzammil H Ansari ◽  
Subhrajyoti Bandyopadhyay ◽  
K. Selvam ◽  
S. Sam David

Author(s):  
Purbita Saha Katha ◽  
Zia Ahmed ◽  
Rafiul Alam ◽  
Badhan Saha ◽  
Arup Acharjee ◽  
...  

2021 ◽  
Author(s):  
Chen Ling ◽  
Dai Yimin ◽  
Lu Qi ◽  
Fang Chengqian ◽  
Wang Zhiheng ◽  
...  

Abstract A brand-new environmental-friendly magnetic cellulosic adsorbent MnFe2O4@Cel-g-p(AA-DMC) was synthesized by natural cellulose and easy-recovered magnetic particles MnFe2O4. Magnetic cellulose composites were characterized by SEM, TEM, XPS, XRD, BET, VSM, TGA and FTIR. The MnFe2O4NPs could activate the peroxymonosulfate (PMS) to produce various reactive oxygen species (ROS). Accordingly, magnetic cellulose composites can synergistic adsorption degradation of dyes from organic wastewater. The Congo red (CR) removal efficiency by MnFe2O4@Cel-g-p(AA-DMC) via PMS activated by MnFe2O4 reached a maximum of 96.9% and only 9% reduction after four adsorption-desorption cycles, indicating the stability and recoverability of adsorbent. It is worth noting that adsorbents can be quickly recovered from aqueous solution by external magnet owing to superior saturation magnetization (35.44 emu·g-1). A possible degradation mechanism of CR on the MnFe2O4@Cel-g-p(AA-DMC) composite was proposed. The results suggest that adsorbent display strong potential for the removal of CR dyes from organic wastewater.


Chemosphere ◽  
2021 ◽  
pp. 130437
Author(s):  
Wenzhi Gu ◽  
Decong Zheng ◽  
Daping Li ◽  
Cuicui Wei ◽  
Xu Wang ◽  
...  

2021 ◽  
Author(s):  
Ezio Ranieri ◽  
Barbara Cosanti ◽  
Ada Cristina Ranieri

Abstract In this study, a bamboo species, the Phyllostachys pubescens – Moso Bamboo (MB) -, was selected for its heavy metals accumulation and translocation potential to restore Cr-contaminated soil. In order to evaluate the potential for phytoremediation using MB to restore Cr-contaminated soil, pot experiments were carried out in simulated Mediterranean conditions, in laboratory, in a controlled environment, at a temperature of 20°C. Cr removal from soil was 43 % starting from a Cr content of approx. 200 mg/kg Dry Weight and the quantity of Cr per gram of root and rhizome was equal to 1.31 mg/g dw, while the quantity of Cr per gram of stem and leaves was equal to 0.86 mg/g dw, after 12 weeks. Pot experiments confirm that phytoremediation using plants such as MB provides an alternative approach for handling Cr-contaminated soil.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 279 ◽  
Author(s):  
Marija Stjepanović ◽  
Natalija Velić ◽  
Antonela Galić ◽  
Indira Kosović ◽  
Tamara Jakovljević ◽  
...  

The aim of the study was to screen the waste wood biomass of 10 wood species as biosorbents for synthetic dye Congo Red (CR) removal from water and to single out the most efficient species for further batch biosorption experiments. Euroamerican poplar (EP), the most efficient species achieving 71.8% CR removal and biosorption capacity of 3.3 mg g−1, was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). Different factors affecting the biosorption process were investigated: initial biosorbent concentration (1–10 g dm−3), contact time (5–360 min), initial CR concentration (10–100 mg dm−3), and the initial pH (pH = 4–9). The results showed that CR removal efficiency increased with the increase of biosorbent concentration and contact time. Increase of initial CR concentration led to an increase of the biosorption capacity, but also a decrease of CR removal efficiency. The highest CR removal efficiency was achieved at pH = 4, while at pH = 9 a significant decrease was noticed. The percentage of CR removal from synthetic wastewater was 18.6% higher than from model CR solution. The Langmuir model fitted well the biosorption data, with the maximum biosorption capacity of 8 mg g−1. The kinetics data were found to conform to the pseudo-second-order kinetics model.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


Chemosphere ◽  
2021 ◽  
Vol 262 ◽  
pp. 128422 ◽  
Author(s):  
Miao-Miao Lu ◽  
Feng Gao ◽  
Chen Li ◽  
Hong-Li Yang

Sign in / Sign up

Export Citation Format

Share Document