scholarly journals Investigation of interactions between binding residues and solubility of grafted humanized anti-VEGF IgG antibodies expressed as full-length format in the cytoplasm of a novel engineered E. coli SHuffle strain

RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6035-6048
Author(s):  
Kanyani Sangpheak ◽  
Dujduan Waraho-zhmayev ◽  
Korakod Haonoo ◽  
Sarun Torpaiboon ◽  
Tarin Teacharsripaiboon ◽  
...  

Monoclonal antibodies (mAbs) are one of the fastest-growing areas of biopharmaceutical industry and have been widely used for a broad spectrum of diseases.

2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 316
Author(s):  
Ki-Hye Kim ◽  
Noopur Bhatnagar ◽  
Subbiah Jeeva ◽  
Judy Oh ◽  
Bo Ryoung Park ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be expanding the pandemic disease across the globe. Although SARS-CoV-2 vaccines were rapidly developed and approved for emergency use of vaccination in humans, supply and production difficulties are slowing down the global vaccination program. The efficacy of many different versions of vaccine candidates and adjuvant effects remain unknown, particularly in the elderly. In this study, we compared the immunogenic properties of SARS-CoV-2 full-length spike (S) ectodomain in young adult and aged mice, S1 with receptor binding domain, and S2 with fusion domain. Full-length S was more immunogenic and effective in inducing IgG antibodies after low dose vaccination, compared to the S1 subunit. Old-aged mice induced SARS-CoV-2 spike-specific IgG antibodies with neutralizing activity after high dose S vaccination. With an increased vaccine dose, S1 was highly effective in inducing neutralizing and receptor-binding inhibiting antibodies, although both S1 and S2 subunit domain vaccines were similarly immunogenic. Adjuvant effects were significant for effective induction of IgG1 and IgG2a isotypes, neutralizing and receptor-binding inhibiting antibodies, and antibody-secreting B cell and interferon-γ secreting T cell immune responses. Results of this study provide information in designing SARS-CoV-2 spike vaccine antigens and effective vaccination in the elderly.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuning Chen ◽  
Ya-Nan Zhang ◽  
Renhong Yan ◽  
Guifeng Wang ◽  
Yuanyuan Zhang ◽  
...  

AbstractThe evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 “knock-in” mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and “alanine walk” studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and “broad-spectrum” management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.


2008 ◽  
Vol 3 (11) ◽  
pp. 1766-1777 ◽  
Author(s):  
Yariv Mazor ◽  
Thomas Van Blarcom ◽  
Brent L Iverson ◽  
George Georgiou

1990 ◽  
Vol 269 (3) ◽  
pp. 709-715 ◽  
Author(s):  
H Hayashi ◽  
M K Owada ◽  
S Sonobe ◽  
K Domae ◽  
T Yamanouchi ◽  
...  

Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.


Parasitology ◽  
1987 ◽  
Vol 94 (2) ◽  
pp. 281-300 ◽  
Author(s):  
A. E. Butterworth ◽  
R. Bensted-Smith ◽  
A. Capron ◽  
M. Capron ◽  
P. R. Dalton ◽  
...  

SUMMARYA total of 129 children were treated forSchistosoma mansoniinfections, and followed for intensity of reinfection at3-monthly intervals over a 21-month period. Blood samples were taken before treatment and at 5 weeks and 6, 12 and 18 months after treatment. This paper presents a statistical analysis of the relationship between various immune responses and subsequent reinfection. Responses analysed were: blood eosinophil levels; IgE antibodies against schistosomulum antigens; IgG antibodies mediating eosinophil-dependent killing of schistosomula; antibodies inhibiting the binding to schistosomulum antigens of two rat monoclonal antibodies that also recognize egg antigens; the levels of anti-adult worm and of anti-egg (total, IgM and IgG) antibodies; and IgM anti-schistosomulum antibodies. Results for each assay were well correlated for each of the five separate blood samples. None of the assays were predictive of resistance to reinfection, butsusceptibilityto reinfection was strongly correlated with results in the preceding blood samples for total anti-egg antibodies and the inhibition of binding of one of the two monoclonal antibodies. Further analysis also revealed a correlation between reinfection intensities and both IgM anti-schistosomulum antibodies and IgM and IgG anti-egg antibodies. These results are consistent with the hypothesis that early infections elicit the development, in response to egg antigens, of antibodies that block immune mechanisms directed against schistosomula. Blocking antibodies may be IgM, but might also be of an ineffective IgG isotype. The existence of such antibodies in young children would explain the slow development of immunity in the face of a range of detectable, potentially protective immune responses.


2015 ◽  
Vol 64 (1) ◽  
pp. 55-59 ◽  
Author(s):  
JUSTYNA M. GATKOWSKA ◽  
BOŻENA DZIADEK ◽  
JAROSŁAW DZIADEK ◽  
KATARZYNA DZITKO ◽  
HENRYKA DŁUGOŃSKA

The aim of this study was to evaluate the potential diagnostic usefulness of the full-length recombinant Toxoplasma gondii MAG1 protein by determining the levels of specific IgM and IgG antibodies in mouse and human sera obtained from individuals with acute and chronic toxoplasmosis. The obtained results revealed that IgG antibodies against MAG1 are a sensitive and specific marker of T. gondii infection since the protein was recognized by both mouse and human sera, 100% and 94.3%, respectively, rendering the full-length rMAG1 a prospective alternative for the polyvalent native antigen (TLA).


Sign in / Sign up

Export Citation Format

Share Document