One-pot sol–gel synthesis of a CoMo catalyst for sustainable biofuel production by solvent- and hydrogen-free deoxygenation: effect of the citric acid ratio

2020 ◽  
Vol 4 (6) ◽  
pp. 2841-2849
Author(s):  
Kyung-Won Jeon ◽  
Jae-Wan Cho ◽  
Ho-Ryong Park ◽  
Hyun-Suk Na ◽  
Jae-Oh Shim ◽  
...  

Investigation of the optimum citric acid ratio for highly active CoMo catalyst synthesis to produce a sustainable biofuel by deoxygenation under solvent- and hydrogen-free conditions.

2016 ◽  
Vol 2 (1) ◽  
pp. 23-30 ◽  
Author(s):  
O.S.N. Ghosh ◽  
◽  
S. Gayathri ◽  
D. Alagarasan ◽  
K.V.P. Kumar ◽  
...  

2020 ◽  
Vol 96 (1) ◽  
pp. 236-246
Author(s):  
Marta Gallo ◽  
Fabio Giudice ◽  
Mauro Banchero ◽  
Silvia Ronchetti ◽  
Luigi Manna ◽  
...  

Abstract Curcumin is a natural active principle with antioxidant, antibacterial and anti-inflammatory properties. Its use is limited by a low water solubility and fast degradation rate, which hinder its bioavailability. To overcome this problem, curcumin can be delivered through a carrier, which protects the drug molecule and enhances its pharmacological effects. The present work proposes a simple one-pot sol–gel synthesis to obtain a hybrid carrier for curcumin delivery. The hybrid consists of a mesostructured matrix of amorphous silica, which stabilizes the carrier, and hexadecyltrimethylammonium (CTA), a surfactant where curcumin is dissolved to increase its water solubility. The carrier was characterized in terms of morphology (FESEM), physicochemical properties (XRD, FTIR, UV spectroscopy) and release capability in pseudo-physiological solutions. Results show that curcumin molecules were entrapped, for the first time, in a silica-surfactant mesostructured hybrid carrier. The hybrid carrier successfully released curcumin in artificial sweat and in a phosphate buffer saline solution, so confirming its efficacy in increasing curcumin water solubility. The proposed drug release mechanism relies on the degradation of the carrier, which involves the concurrent release of silicon. This suggests strong potentialities for topical administration applications, since curcumin is effective against many dermal diseases while silicon is beneficial to the skin.


2006 ◽  
Vol 16 (47) ◽  
pp. 4612-4618 ◽  
Author(s):  
Beatriz Julián ◽  
José Planelles ◽  
Eloisa Cordoncillo ◽  
Purificación Escribano ◽  
Patrick Aschehoug ◽  
...  

2020 ◽  
Vol 835 ◽  
pp. 155135 ◽  
Author(s):  
Wei Zhang ◽  
Jianjiang Li ◽  
Peng Guan ◽  
Chunxiao Lv ◽  
Chao Yang ◽  
...  

2017 ◽  
Vol 42 (26) ◽  
pp. 16495-16513 ◽  
Author(s):  
Manoj Pudukudy ◽  
Zahira Yaakob ◽  
Abudukeremu Kadier ◽  
Mohd Sobri Takriff ◽  
Nik Suhaimi Mat Hassan

2007 ◽  
Vol 10 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Roberto Anedda ◽  
Carla Cannas ◽  
Anna Musinu ◽  
Gabriella Pinna ◽  
Giorgio Piccaluga ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (87) ◽  
pp. 46762-46770 ◽  
Author(s):  
Mohamed Karmaoui ◽  
David M. Tobaldi ◽  
Andrijana Sever Skapin Andrijana Sever Skapin ◽  
Robert C. Pullar ◽  
Maria P. Seabra ◽  
...  

A novel, facile method based on a non-aqueous sol–gel solvothermal process has been developed to synthesise spherical TiO2 nanoparticles (NPs) in one pot.


2014 ◽  
Vol 2 (40) ◽  
pp. 8607-8613 ◽  
Author(s):  
Benjamin Ritter ◽  
Thoralf Krahl ◽  
Knut Rurack ◽  
Erhard Kemnitz

Easy upscaleable one-pot synthesis method at room temperature for ultra small sized Eu3+- and Tb3+-doped CaF2 nanoparticles.


2019 ◽  
Vol 33 (38) ◽  
pp. 27-31
Author(s):  
Vinod B. Taxak ◽  
Satyender P. Khatkar ◽  
Sang-Do Han ◽  
Mukesh Kumar

Sign in / Sign up

Export Citation Format

Share Document